

Milf.decorr=der

Library
of the

University of Toronto

Mites un 1919

BYRNE'S EUCLID

THE FIRST SIX BOOKS OF

THE ELEMENTS OF EUCLID

WITH COLOURED DIAGRAMS AND SYMBOLS
\%

THE ELEMENTS OF EUCLID

 IN WHICH COLOURED DIAGRAMS AND SYMBOLS ARE USED INSTEAD OF LETTERS FOR THEGREATER EASE OF LEARNERS

支

BY OLIVER BYRNE

surveyor of her majesty's settlements in the falkland islands and author of numerous mathematical works

LONDON

WILLIAM PICKERING 1847

TO THE

RIGHT HONOURABLE THE EARL FITZWILLIAM, ETC. ETC. ETC.

THIS WORK IS DEDICATED

BY HIS LORDSHIP'S OBEDIENT

AND MUCH OBLIGED SERVANT,

OLIVER BYRNE.

Digitized by the Internet Archive in 2011 with funding from University of Toronto

INTRODUCTION.

 HE arts and fciences have become fo extenfive, that to facilitate their acquirement is of as much importance as to extend their boundaries. Illuftration, if it does not fhorten the time of ftudy, will at leaft make it more agreeable. This Work has a greater aim than mere illuftration; we do not introduce colours for the purpofe of entertainment, or to amule by certain combinations of tint and form, but to aflift the mind in its refearches after truth, to increafe the facilities of inftruction, and to diffufe permanent knowledge. If we wanted authorities to prove the importance and ufefulnefs of geometry, we might quote every philofopher fince the days of Plato. Among the Greeks, in ancient, as in the fchool of Peftalozzi and others in recent times, geometry was adopted as the beft gymnaftic of the mind. In fact, Euclid's Elements have become, by common confent, the bafis of mathematical fcience all over the civilized globe. But this will not appear extraordinary, if we confider that this fublime fcience is not only better calculated than any other to call forth the fpirit of inquiry, to elevate the mind, and to ftrengthen the reafoning faculties, but alfo it forms the beft introduction to moft of the ufeful and important vocations of human life. Arithmetic, land-furveying, menfuration, engineering, navigation, mechanics, hydroftatics, pneumatics, optics, phyfical aftronomy, \&c. are all dependent on the propofitions of geometry.

Much however depends on the firft communication of any fcience to a learner, though the beft and moft eafy methods are feldom adopted. Propofitions are placed before a ftudent, who though having a fufficient underftanding, is told juft as much about them on entering at the very threfhold of the fcience, as gives him a prepoffeffion moft unfavourable to his future fudy of this delightful fubject; or "the formalities and paraphernalia of rigour are fo oftentatioully put forward, as almoft to hide the reality. Endlefs and perplexing repetitions, which do not confer greater exactitude on the reafoning, render the demonftrations involved and obfcure, and conceal from the view of the ftudent the confecution of evidence." Thus an averfion is created in the mind of the pupil, and a fubject fo calculated to improve the reafoning powers, and give the habit of clofe thinking, is degraded by a dry and rigid courfe of inftruction into an uninterefting exercife of the memory. To raife the curiofity, and to awaken the liftlefs and dormant powers of younger minds fhould be the aim of every teacher; but where examples of excellence are wanting, the attempts to attain it are but few, while eminence excites attention and produces imitation. The object of this Work is to introduce a method of teaching geometry, which has been much approved of by many fcientific men in this country, as well as in France and America. The plan here adopted forcibly appeals to the eye, the moft fenfitive and the moft comprehenfive of our external organs, and its pre-eminence to imprint it fubject on the mind is fupported by the incontrovertible maxim expreffed in the well known words of Horace :-

> Segnius irritant animos demiffa per aurem
> Quàm qua funt oculis fubjecta fidelibus.
> A feebler imprefs through the ear is made,
> Than what is by the faichful eye conveyed.

All language confifts of reprefentative figns, and thofe figns are the beft which effect their purpofes with the greateft precifion and difpatch. Such for all common purpofes are the audible figns called words, which are ftill confidered as audible, whether addreffed immediately to the ear, or through the medium of letters to the eye. Geometrical diagrams are not figns, but the materials of geometrical fcience, the object of which is to fhow the relative quantities of their parts by a procefs of reafoning called Demonftration. This reafoning has been generally carried on by words, letters, and black or uncoloured diagrams; but as the ufe of coloured fymbols, figns, and diagrams in the linear arts and fciences, renders the procefs of reafoning more precife, and the attainment more expeditious, they have been in this inftance accordingly adopted.

Such is the expedition of this enticing mode of communicating knowledge, that the Elements of Euclid can be acquired in lefs than one third the time ufually employed, and the retention by the memory is much more permanent; thefe facts have been afcertained by numerous experiments made by the inventor, and feveral others who have adopted his plans. The particulars of which are few and obvious; the letters annexed to points, lines, or other parts of a diagram are in fact but arbitrary names, and reprefent them in the demonftration; inftead of thefe, the parts being differently coloured, are made to name themfelves, for their forms in correfponding colours represent them in the demonftration.

In order to give a better idea of this fyftem, and
 of the advantages gained by its adoption, let us take a right
angled triangle, and exprefs fome of its properties both by colours and the method generally employed.

Some of the propertios of the right angled triangle ABC , expreffed by the method generally employed.

1. The angle BAC, together with the angles BCA and $A B C$ are equal to two right angles, or twice the angle $A B C$.
2. The angle CAB added to the angle ACB will be equal to the angle $A B C$.
3. The angle ABC is greater than either of the angles BAC or BCA.
4. The angle BCA or the angle CAB is lefs than the angle $A B C$.
5. If from the angle $A B C$, there be taken the angle $B A C$, the remainder will be equal to the angle $A C B$.
6. The fquare of AC is equal to the fum of the fquares of $A B$ and $B C$.

The fame properties expreffed by colouring the different parts.

That is, the red angle added to the yellow angle added to the blue angle, equal twice the yellow angle, equal two right angles.
2.

Or in words, the red angle added to the blue angle, equal the yellow angle.

The yellow angle is greater than either the red or blue angle.

4.

Either the red or blue angle is lefs than the yellow angle.

5.

minus $\Delta=\square$.
In other terms, the yellow angle made lefs by the blue angle equal the red angle.

That is, the fquare of the yellow line is equal to the fum of the fquares of the blue and red lines.

In oral demonftrations we gain with colours this important advantage, the eye and the ear can be addreffed at the fame moment, fo that for teaching geometry, and other linear arts and fciences, in claffes, the fyitem is the beft ever propofed, this is apparent from the examples juft given.

Whence it is evident that a reference from the text to the diagram is more rapid and fure, by giving the forms and colours of the parts, or by naming the parts and their colours, than naming the parts and letters on the diagram. Befides the fuperior fimplicity, this fyftem is likewife confpicuous for concentration, and wholly excludes the injurious though prevalent practice of allowing the ftudent to commit the demonitration to memory; until reafon, and fact, and proof only make impreffions on the underftanding.

Again, when lecturing on the principles or properties of figures, if we mention the colour of the part or parts referred to, as in faying, the red angle, the blue line, or lines, \&c. the part or parts thus named will be immediately feen by all in the clafs at the fame inftant; not fo if we fay the angle ABC , the triangle PFQ , the figure EGKt, and fo on ;
arts and fciences can be taught to the blind, this vifible fystem is no lefs adapted to the exigencies of the deaf and dumb.

Care muft be taken to flow that colour has nothing to do with the lines, angles, or magnitudes, except merely to name them. A mathematical line, which is length without breadth, cannot poffefs colour, yet the junction of two colours on the fame plane gives a good idea of what is meant by a mathematical line; recollect we are fpeaking familiarly, fuch a junction is to be underfood and not the colour, when we fay the black line, the red line or lines, \&c.

Colours and coloured diagrams may at firft appear a clumfy method to convey proper notions of the properties and parts of mathematical figures and magnitudes, however they will be found to afford a means more refined and extenfive than any that has been hitherto propofed.

We fhall here define a point, a line, and a furface, and demonftrate a propofition in order to fhow the truth of this affertion.

A point is that which has pofition, but not magnitude; or a point is pofition only, abftracted from the confideration of length, breadth, and thicknefs. Perhaps the following defcription is better calculated to explain the nature of a mathematical point to thofe who have not acquired the idea, than the above fpecious definition.

Let three colours meet and cover a portion of the paper, where they meet is not blue, nor is it yellow, nor is it red, as it occupies no portion of the plane, for if it did, it would belong to the blue, the red, or the yellow part ; yet it exifts, and has pofition
 without magnitude, fo that with a little refection, this junc-
tion of three colours on a plane, gives a good idea of a mathematical point.

A line is length without breadth. With the affiftance of colours, nearly in the fame manner as before, an idea of a line may be thus given :-

Let two colours meet and cover a portion of the paper; where they meet is not red, nor is it blue; therefore the junction occupies no portion of the plane, and therefore it cannot have breadth, but only length: from which we can readily form an idea of what is meant by a mathematical line. For the purpofe of illuftration, one colour differing from the colour of the paper, or plane upon which it is drawn, would have been fufficient; hence in future, if we fay the red line, the blue line, or lines, \&c. it is the junctions with the plane upon which they are drawn are to be underftood.

Surface is that which has length and breadth without thicknefs.

When we confider a folid body (PQ), we perceive at once that it has three dimenfions, namely:length, breadth, and thicknefs; s fuppofe one part of this folid (PS) to be red, and the other part (QR) yellow, and that the colours be diftinct without commingling, the blue furface (RS) which feparates thefe parts, or which is the fame
Q thing, that which divides the folid without lofs of material, muft be without thicknefs, and only poffeffes length and breadth;
this plainly appears from reafoning, fimilar to that juft employed in defining, or rather defcribing a point and a line.

The propofition which we have felected to elucidate the manner in which the principles are applied, is the fifth of the firft Book.

In an ifofceles triangle ABC , the internal angles at the bafe $A B C$, $A C B$ are equal, and when the fides AB, AC are produced, the external angles at the bafe $B C E, C B D$ are alfo equal.

$=$ and comnon:

Again in
 and

By annexing Letters to the Diagram.

Let the equal fides $A B$ and $A C$ be produced through the extremities $B C$, of the third fide, and in the produced part $B D$ of either, let any point D be affumed, and from the other let AE be cut off equal to AD (B. 1. pr. 3). Let the points E and D , fo taken in the produced fides, be connected by ftraight lines DC and BE with the alternate extremities of the third fide of the triangle.

In the triangles DAC and EAB the fides DA and AC are refpectively equal to $E A$ and $A B$, and the included angle A is common to both triangles. Hence (B. 1. pr. 4.) the line DC is equal to BE , the angle ADC to the angle $A E B$, and the angle $A C D$ to the angle $A B E$; if from the equal lines AD and AE the equal fides AB and AC be taken, the remainders BD and CE will be equal. Hence in the triangles BDC and CEB , the fides BD and DC are refpectively equal to CE and EB , and the angles D and E included by thofe fides are alfo equal. Hence (B. I. pr. 4.)
the angles DBC and ECB , which are thofe included by the third fide $B C$ and the productions of the equal fides AB and AC are equal. Alfo the angles DCB and EBC are equal if thofe equals be taken from the angles $D C A$ and EBA before proved equal, the remainders, which are the angles $A B C$ and $A C B$ oppofite to the equal fides, will be equal.

Therefore in an ifofceles triangle, \&c.

> Q.E. D.

Our object in this place being to introduce the fyftem rather than to teach any particular fet of propofitions, we have therefore felected the foregoing out of the regular courfe. For fchools and other public places of inftruction, dyed chalks will anfwer to defcribe diagrams, \&cc. for private ufe coloured pencils will be found very convenient.

We are happy to find that the Elements of Mathematics now forms a confiderable part of every found female education, therefore we call the attention of thofe interefted or engaged in the education of ladies to this very attractive mode of communicating knowledge, and to the fucceeding work for its future developement.
We fhall for the prefent conclude by obferving, as the fenfes of fight and hearing can be fo forcibly and inftantaneously addreffed alike with one thoufand as with one, the million might be taught geometry and other branches of mathematics with great eafe, this would advance the purpofe of education more than any thing that might be named, for it would teach the people how to think, and not what to think ; it is in this particular the great error of education originates.

THE ELEMENTS OF EUCLID.

BOOK I.

DEFINITIONS.

I.

A point is that which has no parts.
II.

A line is length without breadth.
III.

The extremities of a line are points.
IV.

A ftraight or right line is that which lies evenly between its extremities.
V.

A furface is that which has length and breadth only.
VI.

The extremities of a furface are lines.

VII.

A plane furface is that which lies evenly between its extremities.

VIII.

A plane angle is the inclination of two lines to one another, in a plane, which meet together, but are not in the fame direction.

IX.

A plane rectilinear angle is the inclination of two ftraight lines to one another, which meet together, but are not in the fame ftraight line.

X.

When one ftraight line ftanding on another ftraight line makes the adjacent angles equal, each of thefe angles is called a right angle, and each of thefe lines is faid to be
 perpendicular to the other.

XI.

An obtufe angle is an angle greater than a right angle.

XII.

An acute angle is an angle lefs than a right angle.

XIII.

A term or boundary is the extremity of any thing.

> xIV.

A figure is a furface enclofed on all fides by a line or lines.

xV.

A circle is a plane figure, bounded by one continued line, called its circumference or periphery; and having a certain point within it, from which all ftraight lines drawn to its circumference are equal.

XVI.

This point (from which the equal lines are drawn) is called the centre of the circle.

XVII.

A diameter of a circle is a ftraight line drawn through the centre, terminated both ways in the circumference.

XVIII.

A femicircle is the figure contained by the diameter, and the part of the circle cut off by the diameter.
XIX.

A fegment of a circle is a figure contained by a ftraight line, and the part of the circumference which it cuts off.
XX.

A figure contained by Atraight lines only, is called a rectilinear figure.

XXI.

A triangle is a rectilinear figure included by three fides.

XXII.

A quadrilateral figure is one which is bounded by four fides. The ftraight lines and connecting the vertices of the oppofite angles of a quadrilateral figure, are called its diagonals.

XXIII.

A polygon is a rectilinear figure bounded by more than four fides.

XXIV.

A triangle whofe three fides are equal, is faid to be equilateral.

xxv.

A triangle which has only two fides equal is called an ifofceles triangle.

xXVI.

A fcalene triangle is one which has no two fides equal.

XXVII.

A right angled triangle is that which has a right angle.

xXVIII.

An obtufe angled triangle is that which has an obture angle.

XXIX.

An acute angled triangle is that which has three acute angles.
XXX.

Of four-fided figures, a fquare is that which has all its fides equal, and all its angles right angles.
XXXI.

A rhombus is that which has all its fides equal, but its angles are not right angles.

XXXII.

An oblong is that which has all its angles right angles, but has not all its

XXXIII.

A rhomboid is that which has its oppofite fides equal to one another, but all its fides are not equal, nor its
angles right angles.
XXXIV.

All other quadrilateral figures are called trapeziums.
XXXV.

Parallel ftraight lines are fuch as are in the fame plane, and which being produced continually in both directions, would never meet.

POSTULATES.

I.

Let it be granted that a ftraight line may be drawn from any one point to any other point.
II.

Let it be granted that a finite ftraight line may be produced to any length in a fraight line.
III.

Let it be granted that a circle may be defcribed with any centre at any diftance from that centre.

AXIOMS.

I.

Magnitudes which are equal to the fame are equal to each other.
II.

If equals be added to equals the fums will be equal.
III.

If equals be taken away from equals the remainders will be equal.
IV.

If equals be added to unequals the fums will be unequal.

If equals be taken away from unequals the remainders will be unequal.
VI.

The doubles of the fame or equal magnitudes are equal.

VII.

The halves of the fame or equal magnitudes are equal.

VIII.

Magnitudes which coincide with one another, or exactly fill the fame fpace, are equal.
IX.

The whole is greater than its part.
X.

Two ftraight lines cannot include a fpace.

XI.

All right angles are equal.

XII.

If two ftraight lines () meet a third Atraight line (-) fo as to make the two interior angles (and) on the fame fide lefs than two right angles, there two ftraight lines will meet if they be produced on that fide on which the angles are lefs than two right angles.

The twelfth axiom may be expreffed in any of the following ways:

1. Two diverging ftraight lines cannot be both parallel to the fame ftraight line.
2. If a ftraight line interfect one of the two parallel Atraight lines it muft alfo interfect the other.
3. Only one ftraight line can be drawn through a given point, parallel to a given Araight line.

Geometry has for its principal objects the expofition and explanation of the properties of figure, and figure is defined to be the relation which fubfifts between the boundaries of fpace. Space or magnitude is of three kinds, linear, fuperficial, and folid.

Angles might properly be confiderec as a fourth fpecies of magnitude. Angular magnitude evidently confifts of parts, and muft therefore be admitted to be a fpecies of quantity The ftudent muft not fuppofe that the magni-
 tude of an angle is affected by the length of the ftraight lines which include it, and of whofe mutual divergence it is the meafure. The vertex of an angle is the point where the fides or the legs of the angle meet, as A.
An angle is often defignated by a fingle letter when its legs are the only lines which meet to-
 gether at its vertex. Thus the red and blue lines form the yellow angle, which in other fyftems would be called the angle A. But when more than two B lines meet in the fame point, it was neceffary by former methods, in order to avoid confufion, to employ three letters to defignate an angle about that point,
the letter which marked the vertex of the angle being always placed in the middle. Thus the black and red lines meeting together at C , form the blue angle, and has been ufually denominated the angle FCD or DCF The lines $F C$ and $C D$ are the legs of the angle; the point C is its vertex. In like manner the black angle would be defignated the angle DCB or BCD . The red and blue angles added together, or the angle HCF added to FCD, make the angle HCD ; and fo of other angles.

When the legs of an angle are produced or prolonged beyond its vertex, the angles made by them on both fides of the vertex are faid to be vertically oppofite to each other: Thus the red and yellow angles are faid to be vertically oppofite angles.

Superpofition is the procefs by which one magnitude may be conceived to be placed upon another, fo as exactly to cover it, or fo that every part of each fhall exactly coincide.

A line is faid to be produced, when it is extended, prolonged, or has its length increafed, and the increafe of length which it receives is called its produced part, or its production.

The entire length of the line or lines which enclofe a figure, is called its perimeter. The firft fix books of Euclid treat of plain figures only. A line drawn from the centre of a circle to its circumference, is called a radius. The lines which include a figure are called its fides. That fide of a right angled triangle, which is oppofite to the right angle, is called the hypotenufe. An oblong is defined in the fecond book, and called a reetangle. All the lines which are confidered in the firft fix books of the Elements are fuppofed to be in the fame plane.

The firaight-edge and compaffes are the only inftruments,
the ufe of which is permitted in Euclid, or plain Geometry. To declare this reftriction is the object of the pofulates.

The Axioms of geometry are certain general propofitions, the truth of which is taken to be felf-evident and incapable of being eftablifhed by demonftration.

Propofitions are thofe refults which are obtained in geometry by a procefs of reafoning. There are two fpecies of propofitions in geometry, problems and theorems.

A Problem is a propofition in which fomething is propofed to be done; as a line to be drawn under fome given conditions, a circle to be defcribed, fome figure to be conItructed, \&cc.

The folution of the problem confifts in fhowing how the thing required may be done by the aid of the rule or Atraightedge and compaffes.

The demonftration confifts in proving that the procefs indicated in the folution really attains the required end.

A Theorem is a propofition in which the truth of fome principle is afferted. This principle muft be deduced from the axioms and definitions, or other truths previously and independently eftablifhed. To fhow this is the object of demonftration.

A Problem is analogous to a poftulate.
A Theorem refembles an axiom.
A Poftulate is a problem, the folution of which is affumed.
An Axiom is a theorem, the truth of which is granted without demonftration.

A Corollary is an inference deduced immediately from a propofition.

A Scholium is a note or obfervation on a propofition not containing an inference of fufficient importance to entitle it to the name of a corollary.

A Lemma is a propofition merely introduced for the purpofe of eftablifhing fome more important propofition.

SYMBOLS AND ABBREVIATIONS.

\therefore expreffes the word therefore.
\because. becaufe.
= equal. This fign of equality may be read equal to, or is equal to, or are equal to; but any difcrepancy in regard to the introduction of the auxiliary verbs is, are, \&c. cannot affect the geometrical rigour.
2 means the fame as if the words ' not equal' were written. fignifies greater than.
. . . . lefs than.
. . . . not greater than.
. . . . not lefs than.
is read plus (more), the fign of addition; when interpofed between two or more magnitudes, fignifies their fum.

- is read minus (le/s), fignifies fubtraction; and when placed between two quantities denotes that the latter is to be taken from the former.
X this fign expreffes the product of two or more numbers when placed between them in arithmetic and algebra; but in geometry it is generally ufed to exprefs a reEtangle, when placed between "two ftraight lines which contain one of its right angles." A rectangle may alfo be reprefented by placing a point between two of its conterminous fides.
: :: : expreffes an analogy or proportion ; thus, if A, B, C and D, reprefent four magnitudes, and A has to B the fame ratio that C has to D, the propofition is thus briefly written,

$$
\begin{aligned}
& \mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}, \\
& \mathrm{~A}: \mathrm{B}=\mathrm{C}: \mathrm{D}, \\
& \quad \text { or } \frac{\mathrm{A}}{\mathrm{~B}}=\frac{\mathrm{C}}{\mathrm{D}}
\end{aligned}
$$

This equality or famenefs of ratio is read,

$$
\begin{aligned}
& \text { as } A \text { is to } B \text {, fo is } C \text { to } D \text {; } \\
& \text { or } A \text { is to } B \text {, as } C \text { is to } D \text {. }
\end{aligned}
$$

|| fignifies parallel to.
\perp. . . perpendicular to.
 angle.

- two right angles.

1 or briefly defignates a point.
■, 二, or \exists dignifies greater, equal, or less than.
The fquare defcribed on a line is concifely written thus,
\square $\stackrel{2}{ }$.
In the fame manner twice the fquare of, is expreffed by

2
 ${ }^{2}$.

def. fignifies definition.
pos. populate.
ax. axiom.
hyp. hypothefis. It may be neceffary here to remark, that the hypothefis is the condition affumed or taken for granted. Thus, the hypothefis of the propofition given in the Introduction, is that the triangle is ifofceles, or that its legs are equal.
cont. conftruction. The conftruction is the change made in the original figure, by drawing lines, making angles, defcribing circles, \&c. in order to adapt it to the argument of the demonftration or the folution of the problem. The conditions under which there changes are made, are as indisputable as thole containe in the hypothefis. For inftance, if we make an angle equal to a given angle, there two angles are equal by conftruction.
Q. E. D. Quod eat demonftrandum. Which was to be demonftrated.

Faults to be corrected before reading this Volume.

Page i3, line 9, for def. 7 read def. 10.
45, laft line, for pr. 19 read pr. 29.
54, line 4 from the bottom, for black and red line read blue and red line.
59, line 4, for add black line fquared read add blue line fquared.
60 , line 17 , for red line multiplied by red and yellow line read red line multiplied by red, blue, and yellow line.
76, line II, for def. 7 read def. 10.
8 I , line IO , for take black line read take blue line.
105, line If, for yellow black angle add blue angle equal red angle read yellow black angle add blue angle add red angle.
129, laft line, for circle read triangle.
14 I, line I, for Draw black line read Draw blue line.
196, line 3, before the yellow magnitude infert M.

Euclio.

BOOK I.

PROPOSITION I. PROBLEM.

(poftulate 3.); draw and (poft. I.).
then will be equilateral.

$$
\begin{aligned}
& \text { For }=-\quad \text { (def. 15.) } \\
& \text { and }=-(\text { def. } 15 .), \\
& \therefore=\text { (axiom. })
\end{aligned}
$$

and therefore \square is the equilateral triangle required.
Q.E.D.

(port. 3.) ; produce
-_ (port. 2.), then is the line required.

For $=$ (def. 15.), and \longrightarrow (conf.), \therefore (ax. 3.), but (def. 15.) $=\square=\square$; \therefore drawn from the given point (), is equal the given line -
Q. E. D.

$$
\begin{aligned}
& \text { For }=\sim(\text { def. } 15 .), \\
& \text { and }=\sim \text { (cont.) } \\
& \therefore=(\text { ax. I. })
\end{aligned}
$$

Q. E. D.

F two triangles have two fides of the one respectively equal to two fides of the other, ($=$ to and \quad to \quad) and the angles (and) contained by thole equal fides alfo equal; then their bales or their fides (Land -) are alfo equal: and the remaining and their remaining angles opposite to equal fides are respectively equal $(D=$ and $=$ and the triangles are equal in every respect.

Let the two triangles be conceived, to be fo placed, that the vertex of the one of the equal angles, \qquad Shall fall upon that of the other, and to coincide with \longrightarrow, then will coincide with if applied: confequently will coincide with \longrightarrow or two ftraight lines will enclofe a face, which is impoffible (ax.10), therefore $=-$, and $=$, and as the triangles
 and coincide, when applied, they are equal in every refpect.
Q.E.D.

N any ifofceles triangle \triangle if the equal fides be produced, the external angles at the bale are equal, and the internal angles at the bafe are alfo equal.

Then in

and
 both, and $=\sim=\square$ (hyp.) \therefore,

$$
\begin{aligned}
& D=<\text { and }=\square, \therefore \\
& \square=\square \text { and (pr. 4.) but } \\
& \Delta, \therefore \quad=\begin{array}{l}
(\mathrm{ax.} 3 .) \\
\text { Q. E. D. }
\end{array}
\end{aligned}
$$

 and -) oppofite to them are alfo equal.

For if the fides be not equal, let one of them -a be greater than the other , and from it cut off

Then in
 and \triangle , $=$ $=$ (conft.)

(hyp.) and
common,
\therefore the triangles are equal (pr.4.) a part equal to the whole, which is abfurd; \therefore neither of the fides $\quad . . .0$ or is greater than the other, \therefore hence they are equal
Q.E.D.

N the fame bafe (—), and on the fame fide of it there cannot be two triangles having their conterminous fides (— and \longrightarrow, \longrightarrow and \longrightarrow) at both extremities of the baje, equal to each other.

When two triangles ftand on the fame bafe, and on the fame fide of it, the vertex of the one fhall either fall outfide of the other triangle, or within it; or, lafly, on one of its fides.

If it be poffible let the two triangles be conftructed fo that $\left\{\begin{array}{l}\square \\ \square\end{array}\right\}$, then draw $-m=-=$ and,
$=\square$ (pr. 5.)

therefore the two triangles cannot have their conterminous fides equal at both extremities of the bafe.
Q. E. D.

If the equal bafes \longrightarrow and be conceived to be placed one upon the other, fo that the triangles fhall lie at the fame fide of them, and that the equal fides _ and \qquad
\qquad and be conterminous, the vertex of the one muft fall on the vertex of the other; for to fuppofe them not coincident would contradict the laft propofition.

Therefore the fides \quad and \quad and being coin-
cident with

$$
\therefore \Delta=\boldsymbol{\Delta} .
$$

Q. E. D.

Take $=$ (pr. 3.) draw \longrightarrow, upon which

Becaufe $=$ (conft.)
and
common to the two triangles

$$
\begin{aligned}
\text { and } & =-\quad \text { (conft.) } \\
\therefore A= & \text { (pr. 8.) }
\end{aligned}
$$

Q. E. D.

Therefore the given line is bifected.
Q.E. D.

Take any point (—ane) in the given line,
 draw and it fhall be perpendicular to the given line.

and common to the two triangles.

Q.E. D.

With the given point as centre, at one fine of the line, and any diftance capable of extending to the other fine, defcribe

Make $=\square$ (pr. Io.)

For (pr. 8.) fine

(cont.)
common to both,

Q. E. D.

HEN a fraight line (\longrightarrow) Aanding upon another firaight line (\longrightarrow) makes angles with it; they are either two right angles or together equal to two right angles.

But if \longrightarrow be not \perp to \longrightarrow, draw \longrightarrow; (pr. II.)

Q. E. D.

For, if poffible let \longrightarrow, and not
be the continuation of

then
 $+$

but by the hypothefis

\therefore, is not the continuation of , and the like may be demonftrated of any other ftraight line except,\therefore is the continuation
of \longrightarrow
Q. E. D.

In the fame manner it may be fhown that

Q.E. D.

In like manner it can be fhown, that if be prcduced,

and therefore

NY two angles of a tri-
 are together lefs than two right angles.

and in the fame manner it may be fhown that any other two angles of the triangle taken together are lefs than two right angles.
Q. E. D.

Make \longrightarrow (pr. 3.), draw

If _ be not greater than then muft \longrightarrow = or コ

which is contrary to the hypothefis.
is not lefs than

which is contrary to the hypothefis:

Q. E. D.

F from any point () within a triangle fraight lines be drawn to the extremities of one fide (--.....---), thefe lines muft be together lefs than the other two fides, but muft contain a greater angle.

Produce \longrightarrow,

In the fame manner it may be fhown that

Q.E. D.

IVEN three right
 the fum of any two greater than the third, to conftruct a triangle whofe fides fiall be refpectively equal to the given lines.

then will
be the triangle required.

T a given point (\quad) in a given Araight line (-....-), to make an angle equal to a given rectilineal angle ().

Draw - between any two points in the legs of the given angle.

fo that $=\square$,

and \longrightarrow.

Then

$$
\therefore=2(\text { pr.8. })
$$

Q. E. D.

F two triangles have two fides of the one refpeclively equal to two fides of the other (to -_ and --=-=-to -), and if one of the angles (8).....) contained by the equal fides be greater than the other (.......), the file (—) which is oppofite to the greater angle is greater than the fidel (—) which is oppofite to the lees angle.

 of the other, but their bafes unequal, the angle fubtended by the greater bafe (—) of the one, muft be greater than the angle fubtended by
 the lefs bafe (\quad) of the other.

$$
\begin{gathered}
=, \text { ㄷ or } \sqsupset \quad \text { is not equal to } \\
=\square \text { then }=\square \text { (pr. 4.) }
\end{gathered}
$$

which is contrary to the hypothefis;

which is alfo contrary to the hypothefis :

$$
\therefore \Delta{ }_{c} \boldsymbol{\Delta} .
$$

Q.E.D.

Case I.

Case II.

F two triangles have truo angles of the one reSpectively equal to two angles of the other,
 of the one equal to a fide of the other fimilarly placed with refpect to the equal angles, the remaining fides and angles are refpectively equal to one another.

CASE I.
Let - and which lie between the equal angles be equal, then

For if it be poffible, let one of them be greater than the other;

CASE II.

 draw \qquad

Then in

Confequently, neither of the fides or \ldots is greater than the other, hence they muft be equal. It follows (by pr. 4.) that the triangles are equal in all refpects.
Q.E. D.

F a flraight line $(-)$ meeting two other fraight lines, (\quad and $\longrightarrow)$ makes with them the alternate angles (\sim and

and

 are parallel.If \longrightarrow be not parallel to they Thall meet when produced.

If it be poffible, let thofe lines be not parallel, but meet when produced; then the external angle is greater than (pr. 16), but they are alfo equal (hyp.), which is abfurd : in the fame manner it may be fhown that they cannot meet on the other fide; \therefore they are parallel.
Q. E. D.

F a fraight line
(—), cutting two other ftraight lines (— and), makes the external equal to the internal and oppofite angle, at the fame fide of the cutting line (namely,

at the fame fide (
 and together equal to two right angles, thofe two fraight lines are parallel.

Q.E. D.

STRAIGHT line (——) falling on two parallel ftraight lines (—and $\xrightarrow{\text {), makes the alternate }}$ angles equal to one another; and alfo the external equal to the internal and oppofite angle on the fame fide; and the two internal angles on the fame fide together equal to two right angles.

For if the alternate angles
and be not equal, draw $=\quad$ (pr.23).

Therefore (pr.27.) and therefore two ftraight lines which interfect are parallel to the fame ftraight line, which is impoffible (ax. I2).

Hence the alternate angles

are not
unequal, that is, they are equal :

(pr. 15);

nal and oppofite on the fame fide: if
be added to
both, then
 +
Q. E. D.

Then,

Q.E.D.

Draw \quad from the point 7 to any point

Q. E. D.

F any fidel (—) of a triangle be produce, the external

to the fum of the two internal and oppofite angles (\qquad and
 and the three internal angles of every triangle taken together are equal to two right angles.

TRAIGHT lines (and \longrightarrow) which join the adjacent extremities of two equal and parallel ftraight lines (\longrightarrow and $=n+z, m=-\infty$), are themelves equal and parallel.

Draw the diagonal.

and common to the two triangles;

Q. E. D.

HE oppofite fides and angles of any parallelogram are equal, and the diagonal (\longrightarrow)
divides it into two equal parts.

and common to the two triangles.

Therefore the oppofite fides and angles of the parallelogram are equal: and as the triangles
 are equal in every refpect (pr. 4,), the diagonal divides the parallelogram into two equal parts.
Q. E. D.
between the fame parallels, are (in area) equal.

On account of the parallels,

\therefore

Q.E.D.
 equal bafes, and between the fame parallels, are equal.

Draw \longrightarrow and $-\mathbf{- c . - n}$,
$\longrightarrow=\ldots$, by (pr. 34, and hyp.);

$$
\therefore —=\text { and } \|
$$

$\therefore \quad=$ and || --w-o- (pr. 33.)

And therefore

is a parallelogram :

on the fame bafe, and between the fame parallels, and therefore equal. (pr. 35.)

equal bafes and between the fame parallels are equal.

Q.E. D.
 (-) and on the fame fide of it, are between the fame parallels.

If of the triangles, be not $\|$ draw $\underset{\text { meeting ------. }}{ }$. (pr.3r.), Draw \longrightarrow
 which is abfurd.

\therefore H \longrightarrow and in the fame

 manner it can be demonftrated, that no other line except

If which joins the vertices of triangles
be not ||
draw $\quad \|$-ane- (pr. 3r.),
meeting ---------.
Draw \quad.

$\therefore=$, a part equal to the whole,
which is abfurd.
\therefore H : and in the fame manner it can be demonftrated, that no other line except

Q.E. D.

Draw the diagonal;

Then

- Q. E. D.

O conftruct parallelogram equal to a given
triangle ing an angle equal to a given rectilinear angle

Q. E. D.
the parallelograms which are about the diagonal of a parallelogram are equal.

O a given Araight line (—) to $a p$ ply a parallelogram equal to a given triangle (), and having an angle equal to a given rectilinear angle
 (\quad).

Make

(pr. 42.)
and having one of its fides $\mathbf{- = - = -}=$ conterminous
with and in continuation of .
Produce _ till it meets
draw produce it till it meets $=-m=\infty$ continued;
draw $\sim=-\infty$ || meeting
produced, and produce

46 BOOK I. PROP. XL. PROB.

angle equal to a given rectilinear angle

Draw and dividing the rectilinear figure into triangles.

having
 (pr. 42.) to apply

Q.E. D.

PON a given fraight line (—) io construct a Square.

Draw $\quad \mathrm{II}$, and meeting \longrightarrow drawn $\| \longrightarrow$.

and the remaining fides and angles mut be equal, (pr. 34.)

Q.E.D.
 the fum of the Squares of the fides, (and \longrightarrow.
$\mathrm{On} \longrightarrow$ and
defcribe fquares, (pr. 46.)

Draw || -m eon (pr. 3i.) alpo draw \longrightarrow and \longrightarrow.

Again, because \qquad

In the fame manner it may be fhown

Draw -mon-o. $\frac{\perp}{\text { and draw nomeon alfo. }}$ (prs.if.3.)

Q. E. D.

BOOK II.

DEFINITION I.

RECTANGLE or a right angled parallelogram is faid to be contained by any two of its adjacent or conterminous fides.

Thus: the right angled parallelogram
 be contained by the fides and \qquad or it may be briefly defignated by
\qquad

If the adjacent fides are equal; i. e. then which is the expreffion
for the rectangle under and
is a fquare, and

DEFINITION II.

N a parallelogram, the figure compofed of one of the parallelograms about the diagonal, together with the two complements, is called a Gnomon.

called Gnomons.

HE rectangle contained by two flraight lines, one of which is divided into any number of parts,

is equal to the fum of the rectangles
 contained by the undivided line, and the feveral parts of the divided line.

Draw $\perp —$ (prs.2.3. B.1.); complete the parallelograms, that is to fay,

$$
=\left\{\begin{array}{l}
t
\end{array}\right.
$$

Defcribe
(B. i. pr. 46.)

Draw
parallel to
(B. I. pr. 3 I)

Q. E. D.

F a fraight line be divided into any two parts ——, the rectangle contained by the whole line and either of its parts, is equal to the fouare of that part, together with the rectangle under the parts.

Defcribe
 (pr. 46, B. і.)

Complete (pr. 31, B. I.)

In a fimilar manner it may be readily fhown that $-\cdots={ }^{2}+\cdots$.
Q. E. D

F a fraight line be divided into any two parts the Square of the whole line is equal to the Squares of the parts, together with twice the rectangle contained by the parts.

Defcribe

(pr. 46, B. 1.)
draw -an (port. I.),
and $\left\{\begin{array}{ll}\sim & \| \\ \cdots=- & \|\end{array}\right\}$ (pr. 31, B. 1.)
$=$ (pr. 5, B. ı.),
$=($ pr. 29, B. 1.)
-

\therefore by (prs. $6,29,34$. B. i.) $~ \square$ is a fquare $=\square$.
For the fame reafons Δ is a fquare $=\square$,
$\square=\square=-($ in. 43, b. i. $)$

$$
\therefore-\square_{\text {twice }}=-\square^{2}+
$$

Q. E. D.

Fa fraight line be divided
into two equal parts and alfo into two unequal parts, the rectangle contained by the unequal parts, together with the Square of the line between the points of Section, is equal to the Square of half that line

Defcribe

$=\square$ (р. 43, B. . $)$
$\therefore($ ax. 2.$)$

--

F a fraight line be bifected and produced to any point the rectangle contained by the whole line fo increafed, and the part produced, together with the Square of half the line, is equal to the Square of the line made up of the half, and the produced part.

F a fraight line be divided into any two parts \longrightarrow, the Squares of the whole line and one of the parts are equal to twice the rectangle contained by the whole line and that part, together with the Square of the other parts.

Defcribe , (pr. 46, B. і.).
Draw (poft. I.),

Fa fraight line be divided into two o equal parts \longrightarrow, and alfo into two unequal parts the Squares of the unequal part's are together double the squares of half the line,
\qquad and of the part between the points of Section.

F a ftraight line _-_be bifeted and produce to any point ———, the Squares of the whole produced line, and of the produced part, are togethe double of the Squares of the half line, and of the line made up of the half and produce part.

(pr. 5, B. i.) $=$ half a right angle. (cor. pr. 32, B. I.)
(pr. 5, B. ı.) $=$ half a right angle (cor. pr. 3^{22}, B. i.)
$\therefore \quad=$ a right angle.

half a right angle（prs． $5,32,29,34$ ，B．I．）， and

$$
\ldots \text {, (prs. 6, 34, B. ェ.). Hence by (pr. 47, B. I.) }
$$

$$
\therefore \square^{2}+\operatorname{-a}^{2}=2+2-
$$

Q．E．D．

Produce --------.---.... (port. 2.).

N any obtuse angled triangle, the Square of the fade fubtending the obtuse angle exceeds the fum of the Squares of the fides containing the obtufe angle, by twice the rectangle contained by either of the fe fides and the produced parts of the fame from the obtuse
 angle to the perpendicular let fall on it from the oppofice acute angle.

By pr. 4, B. 2.
 add ${ }^{2}$ to both
$--^{2}+{ }^{2}={ }^{2}$ (pr. 47, B. г.)

+ "pr. 47, B. і.). Therefore, 2 (p)
$\longrightarrow^{2}=2 \cdot \square \cdot{ }^{2}+$
$\square{ }^{2}$: hence \square^{2} ᄃ ${ }^{2}+{ }^{2}$
by 2 , - ---=-=.
Q.E. D.

FIRST,
SECOND.

N any friangle, the Square of the fade subtending an acute angle, is lees than the fum of the Squares of the fides con-
taining that angle, by twice the rectangle contained by either of thee fides, and the part of it intercepted between the foot of the perpendicular let fall on it from the oppofite angle, and the angular point of the acute angle.

FIRST.

SECOND.

- 2 - ${ }^{2}+{ }^{2}$ by 2 。

Firft, fuppofe the perpendicular to fall within the triangle, then (pr. 7, B. 2.)

$$
\therefore \text { (pr. } 47, \text { B. п. })
$$


```
    2. -_=--..
```

Next fuppofe the perpendicular to fall without the triangle, then (pr. 7, B. 2.)

$$
\text { add to each }- \text { then }
$$

$$
\left.+--\boldsymbol{m}^{2}+\square^{2} \therefore \text { (pr. } 47, \text { B. г. }\right),
$$

Q.E.D.

O draw a right line of which the Square hall be equal to a given rectilinear figure.

To draw - Such that,

Make

take- $=\longrightarrow$ (pr. io, B. ı.),

and produce to meet it: draw

Q. E. D.

BOOK III.

DEFINITIONS.

I.

QUAL circles are thofe whofe diameters are equal.
II.

A right line is said to touch a circle when it meets the circle, and being produced does not cut it.

III.

Circles are faid to touch one another which meet but do not cut one another.

IV.

Right lines are faid to be equally diftant from the centre of a circle when the perpendiculars drawn to them from the centre are equal.

V.

And the ftraight line on which the greater perpendicular falls is faid to be farther from the centre.

VI.

A fegment of a circle is the figure contained by a ftraight line and the part of the circumference it cuts off.

VII.

An angle in a fegment is the angle contained by two ftraight lines drawn from any point in the circumference of the fegment to the extremities of the ftraight line which is the bafe of the fegment.

VIII.

An angle is faid to ftand on the part of the circumference, or the arch, intercepted between the right lines that contain the angle.
IX.

A fector of a circle is the figure contained by two radii and the arch between them.

Similar fegments of circles are thofe which contain
X. equal angles.

Circles which have the fame centre are called concentric circles.

Draw within the circle any ftraight line $\quad=$ =enen, draw \perp bifect , and the point of bifection is the centre.

For, if it be poffible, let any other point as the point of concourfe of \longrightarrow, and be the centre.
 and ————---- (hyp. and B. I, def. I5.)
 $\square=\square$ (B. I, pr. 8.), and are therefore right angles; but $\square=\square$ (conft.) $\square=\square$ (ax.1. \quad.) which is abfurd; therefore the affumed point is not the centre of the circle; and in the fame manner it can be proved that no other point which is not on _ is the centre, therefore the centre is in , and therefore the point where is bifected is the centre.

> Q.E.D.

STRAIGHT line (\quad) joining two points in the circumference of a circle

, lies wholly within the circle.

Find the centre of

\qquad meeting the circumference from the centre ;

$$
\text { draw } \longrightarrow \text { and }
$$

Then

(B. I. pr. 5.)

\therefore every point in lies within the circle. Q. E. D.

F a fraight line (—) drawn through the centre of a circle
 bifectsachord (-....) which does not pafs through the centre, it is perpendicular to it; or, if perpendicular to it, it bijects it.

Draw and to the centre of the circle.

Q.E. D.

F in a circle two fraight lines cut one another, which do not both pafs through the centre, they do not bifect one another.

If one of the lines pafs through the centre, it is evident that it cannot be bifected by the other, which does not pafs through the centre.

$$
\begin{aligned}
& \text { But if neither of the lines or } \\
& \text { pafs through the centre, draw } \\
& \text { from the centre to their interfection. }
\end{aligned}
$$

$$
\text { If } 工 \text { be bifected, }=-\infty=-\perp \text { to it (B. 3. pr. 3.) }
$$

equal to the whole, which is abfurd :

\therefore and

do not bifect one another.
Q.E.D.

interfect, they have not the
fame centre.

Suppofe it poffible that two interfecting circles have a common centre ; from fuch fuppofed centre draw \qquad to the interfecting point, and -........ meeting the circumferences of the circles.

$$
\begin{aligned}
& \text { Then }=\text { (B. 1. def. } 15 \text {.) } \\
& \text { and }=\text { (B. ı. def. 15.) }
\end{aligned}
$$

equal to the whole, which is abfurd:
\therefore circles fuppofed to interfect in any point cannot have the fame centre.
Q.E. D.

For, if it be poffible, let both circles have the fame centre; from fuch a fuppofed centre draw cutting both circles, and to the point of contact.

equal to the whole, which is abfurd ;
therefore the affumed point is not the centre of both circles ; and in the fame manner it can be demonftrated that no other point is.
Q. E. D.

FIGURE 1.

F from any point within a circle which is not the centre, lines $\left\{\begin{array}{l}\text { —......... }\end{array}\right.$ are drawn to the circumference; the greateft of thofe lines is that (-an-*) which paffes through the centre, and the leaft is the remaining part (\quad) of the diameter.

Of the others, that (—) which is nearer to

FIGURE II.
 the line pafling through the centre, is greater than that $(-)$ which is more remote.

Fig. 2. The two lines (—.... and) which make equal angles with that palfing through the centre, on oppofite fides of it, are equal to each other; and there cannot be drawn a third line equal to them, from the fame point to the circumference.

FIGURE I.

To the centre of the circle draw $-=-=-=$ and $-m-m=-$;
then
(B. 1. def. 15.)
in like manner menen may be fhewn to be greater than , or any other line drawn from the fame point to the circumference. Again, by (B. r. pr. 20.)

take from both; $\therefore \square \square$ (ax.), and in like manner it may be fhewn that is lefs
than any other line drawn from the fame point to the circumference. Again, in
 and , common,

ᄃ

(B. 1. pr. 24.) and
may in like manner be proved greater than any other line drawn from the fame point to the circumference more remote from

FIGURE II.

a part equal to the whole, which is abfurd :
$\therefore=$ and no other line is equal to drawn from the fame point to the circumference; for if it were nearer to the one paffing through the centre it would be greater, and if it were more remote it would be lefs.
Q. E. D.

The original text of this propofition is here divided into three parts.

I.

F from a point without a circle, fraight lines $\left\{\begin{array}{l}\square \\ -\infty \\ -\infty\end{array}\right\}$ are drawn to the circumference; of thole falling upon the concave circumference the greateft is that (—_-...) which pales through the centre, and the line $(-)$ which is nearer the greateft is greater than that (-) which is more remote.

Draw =-"-e.... and menomene to the centre.
Then,

 but $\square \longrightarrow$ (B. I. pr. 20.) $\therefore \square$ is greater than any other line drawn from the fame point to the concave circumference.

Again in

and common, but

- \square
and in like manner may be fhewn \square than any other line more remote from

II.

Of thofe lines falling on the convex circumference the leaft is that (-am-anos) which being produced would pafs through the centre, and the line which is nearer to the leaft is lefs than that which is more remote.

And again, fince $+\cdots$....... ㄷ

$$
\text { _ + =osen (B. I.pr. } 2 \mathrm{II} \text {), }
$$

$$
\text { and }=
$$

III.

Alfo the lines making equal angles with that which paffes through the centre are equal, whether falling on the concave or convex circumference ; and no third line can be drawn equal to them from the fame point to the circumference.

For if n-men \subset =-men, but making $\langle=D$; make -----s = - - - -

$$
\begin{aligned}
& \text { For, fince + } \square \longrightarrow \text { (B. 1. pr.20.) } \\
& \text { and } \quad=\longrightarrow \text {, }
\end{aligned}
$$

Then in

 and \longrightarrow common, and alfo $D=$,

$$
\therefore=-=\text { (B. 1. pr. 4.); }
$$

Neither is …........ ᄃ \quad …on=, they are
$\therefore=$ to each other.

And any other line drawn from the fame point to the circumference muft lie at the fame fide with one of thefe lines, and be more or lefs remote than it from the line paffing through the centre, and cannot therefore be equal to it.
Q. E. D.

F a point be taken. within a cir:ie \longrightarrow, from which nore than two equal fraight lines
 can be drawn to the circumference, that point muft be the centre of the circle.

For, if it be fuppofed that the point in which more than two equal ftraight lines meet is not the centre, fome other
 point -.. muft be ; join thefe two points by and produce it both ways to the circumference.

Then fince more than two equal ftraight lines are drawn from a point which is not the centre, to the circumference, two of them at leaft muft lie at the fame fide of the diameter , which is not the centre, ftraight lines are drawn to the circumference; the greateft is -nn, which paffes through the centre: and
which is more remote (B. 3. pr. 8.) ;
but $=\sim$ (hyp.) which is abfurd.
The fame may be demonftrated of any other point, different from , which muft be the centre of the circle. Q. E. D.

NE circle
 canno, interfect another in more points than two.

For, if it be poffible, let it interfect in three points;
from the centre of
 draw and to the points of interfection;

(B. 1. def. I 5.),
but as the circles interfect, they have not the fame centre (B. 3. pr. 5.) :
\therefore the affumed point is not the centre of
 , and \therefore as \longrightarrow, and are drawn from a point not the centre, they are not equal (B. 3 . prs. 7,8); but it was fhewn before that they were equal, which is abfurd; the circles therefore do not interfeet in three points.
Q. E. D.
 ways; from a point of contact draw
 of contact draw to the centre of

(B. 1. pr. 20.),
and -men-won = as they are radii of
 but $=-\infty-\infty-\infty$,
becaufe they are radii of

and $\therefore \infty-\infty=\infty \quad$ a part greater than the whole, which is abfurd.

The centres are not therefore fo placed, that a line joining them can pafs through any point but a point of contact.
Q.E.D.

ther externally, the flraight line ——_ joining their centres, pafles through the point of contact.

If it be poffible, let _ join the centres, and not pafs through a point of contact ; then from a point of contact draw $---\cdots$ and to the centres.

$$
\begin{aligned}
& \text { Becaufe }-\infty=0+\square \text { ㄷ } \\
& \text { (B. ı. pr. 20.), } \\
& \text { and }=\cdots \text { (B. i. def. } 15 \text {.), } \\
& \text { and }=\text { (B. i. def. 15.), } \\
& \therefore \quad+\text { ㄷ , a part greater }
\end{aligned}
$$ than the whole, which is abfurd.

The centres are not therefore fo placed, that the line joining them can pafs through any point but the point of contact.
Q. E. D.

FIGURE I.

FIGURE II.

NE circle cannot touch another, either externally or internally, in more points than one.

FIGURE III.
Fig. I. For, if it be poffible, let
 and

another internally in two points; draw joining their centres, and produce it until it pafs through one of the points of contact (B. 3. pr. 11.); draw and \longrightarrow, But --m-mo $=\longrightarrow$ (B. 1. def. 15 .),
\therefore if be added to both,

which is abfurd.

Fig. 2. But if the points of contact be the extremities of the right line joining the centres, this ftraight line muft be bifected in two different points for the two centres; becaufe it is the diameter of both circles, which is abfurd.

Fig. 3. Next, if it be poffible, let

touch externally in two points; draw -..... joining the centres of the circles, and paffing through one of the points of contact, and draw - and

which is abfurd.

There is therefore no cafe in which two circles can touch one another in two points.

$$
\therefore-----^{2}+=\cdots+\cdots+
$$

\qquad 2

BOOK III. PROP. XIV. THEOR. 93

Alfo, if the lines \quad. equally diftant from the centre; that is to fay, if the perpendiculars - and be given equal, then

For, as in the preceding cafe,

$\therefore \square^{2}={ }^{2}$, and the doubles of thefe

$$
\begin{aligned}
& \text { Q.E.D. }
\end{aligned}
$$

HE diameter is the greateft ftraight line in a circle: and, of all others, that which is neareft to the centre is greater than the more remote.

FIGURE I.

$$
\begin{aligned}
& \text { The diameter } \quad \text { is any line } \\
& \text { For draw }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \\
& \text { and }=\square
\end{aligned}
$$

$$
\begin{gathered}
\therefore \ldots+\square \\
\text { but } \longrightarrow+\text { (B. I. pr. 20.) }
\end{gathered}
$$

$$
\therefore \square \square \square
$$

Again, the line which is nearer the centre is greater than the one more remote.

Firft, let the given lines be \longrightarrow and $=-=-\cdots=-$, which are at the fame fide of the centre and do not interfect ;

FIGURE II.

Let the given lines be \longrightarrow and which either are at different fides of the centre, or interfect ; from the centre draw wa......... and $=-=-=-\perp \longrightarrow$ and \longrightarrow,

Since _and are equally diftant from

$$
\text { the centre, }==\text { (B. 3. pr. 14.); }
$$

$$
\text { but } \longrightarrow \sqsubset(\text { Pt. I. B. 3. pr. I } 5 .) \text {, }
$$

$$
\therefore \square \square \square
$$

Q. E. D.

$$
\begin{aligned}
& \text { make }=\ldots,- \text {, and } \\
& \text { draw } 1
\end{aligned}
$$

 line drawn extremity of the diameter \longrightarrow of a circle perpendicular 10 it falls without the circle.

And if any fraight line --m-some be drawn from a point within that perpendi-
cular to the point of contact, it cuts the circle.

PART I

If it be poffible, let \longrightarrow, which meets the circle again, be $\perp \longrightarrow$, and draw \longrightarrow.

Then, becaufe $=\square$,

$$
\Longrightarrow=\sum \text { (B. I. pr. 5.) }
$$

and \therefore each of these angles is acute. (B. 1. pr. 17.)

$$
\begin{aligned}
& \text { but } \triangle \text { (hyp.), which is abfurd, therefore } \\
& \text { drawn } \perp \longrightarrow \text { does not meet } \\
& \text { the circle again. }
\end{aligned}
$$

PART II.

Let \longrightarrow be $\perp \ldots$ and let $-==-=$ be drawn from a point ${ }^{\circ \times 0^{\circ}}$ between and the circle, which, if it be poffible, does not cut the circle.

...-----a...... \perp-..-=...., drawn from the centre of the circle, it muft fall at the fide of $\therefore D$ which is fuppofed to be a right angle, is \square

 the whole, which is abfurd. Therefore the point does not fall outfide the circle, and therefore the fraight line cuts the circle.
Q. E. D.
 given point, either in or outfide of its circumference.

If the given point be in the circumference, as at , it is plain that the ftraight line $\longrightarrow \perp$ the radius, will be the required tangent (B. 3. pr. 16.) But if the given point \uparrow be outfide of the circumference, draw
from it to the centre, cutting

draw .\|no...... \perp.nen....., defcribe
 then will be the tangent required.

BOOK III. PROP. XVII. THEOR.

F a right line be a tangent to a circle, the Araight line - drawn from the centre to the point of contaEt, is perpendicular to it.

$$
\begin{aligned}
& \text { For, if it be poffible, } \\
& \text { let } \\
& \text { then becaufe } \\
& \text { is acute (B. 1. pr. 17.) }
\end{aligned}
$$

(B. 1. pr. 19.);
and $\therefore \subset \square$, a part greater than the whole, which is abfurd.
$\therefore \quad . . .$. is not \perp-.e.e..... ; and in the fame manner it can be demonftrated, that no other line except is perpendicular to
Q. E. D.

F a fraight line be a tangent to a circle, the Jraight line \qquad drawn perpendicular to it from point of the contact, paffes through the centre of the circle.

For, if it be poffible, let the centre be without , and draw from the fuppofed centre to the point of contact.

(B. 3. pr. 18.)

a part equal to the whole, which is abfurd.
Therefore the affumed point is not the centre; and in the fame manner it can be demonitrated, that no other point without \qquad is the centre.

> Q. E. D.

FIGURE III.
Let the centre be without and draw , the diameter.

Becaufe $=$ twice ; and $\nabla=$ twice \square (cafe 1.);

FIGURE III.

Q. E. D.

HE angles (,) in the fame fegment of a circle are equal.

FIGURE I.

Let the fegment be greater than a femicircle, and draw and to the centre.

(B. 3. pr. 20.);

FIGURE II.

FIGURE II.
Let the fegment be a femicircle, or lefs than a femicircle, draw the diameter, alfo draw \longrightarrow.

Q.E.D.

the diagonals; and becaufe angles in
the fame fegment are equal

add \quad to both.

two right angles (B. i. pr. 32.). In like manner it may be fhown that,

For if it be poffible, let two fimilar fegments
 and
 be conftructed; draw any right line cutting both the fegments, draw \longrightarrow and

Becaufe the fegments are fimilar,

which is abfurd: therefore no point in either of the fegments falls without the other, and therefore the fegments coincide.
Q. E. D.

I MILAR
Segments

For, if
be fo applied to

that ——may fall on \longrightarrow, the extremities of
_ may be on the extremities and

becaufe
muft wholly coincide with \square
and the fimilar fegments being then upon the fame ftraight line and at the fame fide of it, muft alfo coincide (B. 3. pr. 23.), and are therefore equal.
Q. E. D.

where they meet is the centre of the circle.

Becaufe terminated in the circle is bifected perpendicularly by , it paffes through the centre (B. 3. pr. I.), likewife paffes through the centre, therefore the centre is in the interfection of thefe perpendiculars.
Q.E. D.

Firs, let

they are aldo equal (B. 3. pr. 24.)

If therefore the equal fegments be taken from the equal circles, the remaining fegments will be equal;

$$
\begin{aligned}
& \text { hence } \quad(\mathrm{ax.} 3 .) \text {; } \\
& \text { and } \therefore
\end{aligned}
$$

But if the given equal angles be at the circumference, it is evident that the angles at the centre, being double of thofe at the circumference, are alfo equal, and therefore the arcs on which they ftand are equal.
Q. E. D.

the angles
 and which ftand upon equal arches are equal, whether they be at the centres or at the circumferences.

For if it be poffible, let one of them be greater than the other and make

to the whole, which is abfurd; \therefore neither angle is greater than the other, and
\therefore they are equal.
Q. E. D.

equal chords -, -.......... cut off equal arches.

From the centres of the equal circles,

N equal circles

the chords and which fubtend equal arcs are equal.

Draw
make
draw

—＝－－ェーーー（conft．），
\longrightarrow is common，

（B．3．pr．28．），
and therefore the given arc is bifected．

N a circle the angle in a femicircle is a right angle, the angle in a fegment greater than a femicircle is acute, and the angle in a fegment lefs than a femicircle is obtufe.

FIGURE I.
The angle in a femicircle is a right angle.

Draw and \longrightarrow

right angles $=$ a right angle.(B. 1. pr. 32.)

FIGURE II.

 in a fegment greater than a femicircle is acute.Draw

the diameter, and
 is acute.

FIGURE III.

The angle
in a fegment lefs than femicircle is obtufe.

Take in the oppofite circumference any point, to which draw \rightarrow and

(B. 3. pr. 22.)

\therefore is obtufe.
Q.E.D.

F a right line be a tangent to a circle, and from the point of contact a right line be drawn cutting the circle, the angle made by this line with the tangent is equal to the angle in the alterate fegment of the circle.

If the chord fhould pafs through the centre, it is evident the angles are equal, for each of them is a right angle. (B. 3. prs. 16, 31.)

But if not, drav \perp from the point of contact, it muft pafs through the centre of the circle, (B. 3. pr. 19.)

 the alternate fegment.
Q. E. D.

N a given ftraight line to defcribe a fegment of a circle that Jhall contain an angle equal to a given angle \square, \square.

If the given angle be a right angle, bifect the given line, and deferibe a femicircle on it, this will evidently contain a right angle. (B. 3. pr. 3 I.)

If the given angle be acute or obtufe, make with the given line, at its extremity,

— is a tangent to

(B. 3. pr. 16.)
\therefore divides the circle into two fegments capable of containing angles equal to
which were made refpectively equal
to
 (B. 3.pr. 32.)
Q. E. D.

which foall contain an angle equal to a given angle

Draw (B. 3. pr. 17.),
a tangent to the circle at any point ; at the point of contact make

and contains an angle $=$ the given angle.

$$
\begin{aligned}
& \text { Becaufe is a tangent, } \\
& \text { and cuts it, the } \\
& \text { (B. 3. pr. 32.), } \\
& \text { (conit.) }
\end{aligned}
$$

Q. E. D.

FIGURE I.

F two chords $\{$-............. $\}$ in a circle interject each other, the rectangle contained by the Segments of the one is equal to the rectangle contained by the figments of the other.

FIGURE I.

If the given right lines pass through the centre, they are bifected in the point of interfection, hence the rectangles under their fegments are the fquares of their halves, and are therefore equal.

FIGURE II.

FIGURE III.

FIGURE III.
Let neither of the given lines pals through the centre, draw through their interfection a diameter
 cuts it; the rectangle under the whole cutting line -...... and the external fegment \quad is equal to the fquare of the tangent .

FIGURE I.

Let _...... pafs through the centre;
draw from the centre to the point of contact ;

FIGURE II.
FIGURE II.
If do not pafs through the centre, draw

(B. 2. pr. 6), that is,

Q. E. D.

F from a point outfide of a circle two fraight lines be drawn, the one -a. cutting the circle, the other meeting it, and if the rectangle contained by the whole cutting line _....... and its external fegment $=.$. be equal to the fquare of the line meeting the circle, the latter is a tangent to the circle.

Draw from the given point
a tangent to the circle, and draw from the centre $\because \sim,=-\ldots \ldots . .$. , and $=-\infty=-=$,

$$
\therefore \square=\square \text { (В. ı. pr. 8.) }
$$

but
 and \therefore is a tangent to the circle (B. 3. pr. 16.). Q. E. D.

BOOK IV.

DEFINITIONS.
I.

RECTILINEAR figure is faid to be infcribed in another, when all the angular points of the infcribed figure are on the fides of the figure in which it is faid to be infcribed.

II.

A figure is faid to be defcribed about another figure, when all the fides of the circumfcribed figure pafs through the angular points of the other figure.

III.

A rectilinear figure is faid to be infcribed in a circle, when the vertex of each angle of the figure is in the circumference of the circle.

IV.

A rectilinear figure is faid to be circumfcribed about a circle, when each of its fides is a tangent to the circle.

V.

A circle is faid to be inforibed in a rectilinear figure, when each fide of the figure is a tangent to the circle.

VI.

A circle is faid to be circumfcribed about a rectilinear figure, when the circumference paffes through the vertex of each angle of the figure.

VII.

A straight line is faid to be inforibed in a circle, when its extremities are in the circumference.

The Fourth Book of the Elements is devoted to the folution of problems, chiefly relating to the infcription and circumfcription of regular polygons and circles.

A regular polygon is one whofe angles and fides are equal. equal to a given fraight line (—), not greater than the diameter of the circle.

Draw no.... , the diameter of

and if $\ldots \ldots-=$, then the problem is folved.

But if $\cdots \cdots$ - be not equal to
=0.nor- ᄃ (hyp.);
make $=\ldots \ldots \ldots=$ (B. 1. pr. 3.) with

draw \qquad , which is the line required.

For \qquad = …....
(B. I. def. i5. conft.)
Q. E. D.

To any point of the given circle draw , a tangent (B. 3. pr. 17.) ; and at the point of contact

and therefore the triangle infcribed in the circle is equiangular to the given one.
Q.E.D.

circumfcribe a triangle equiangular to a given triangle.

In the fame manner it can be demonftrated that

and therefore the triangle circumfcribed about the given circle is equiangular to the given triangle.
Q.E.D.

N a given triangle
foribe a circle.

Bifect

(B. 1. pr. 9.) by
and
from the point where thefe lines meet draw

 and woes refpectively perpendicular to \longrightarrow and \longrightarrow.

> In

In like manner, it may be fhown alfo that \quad eneenese $=$ =aco.....,
 hence with any one of thefe lines as radius, defcribe

and it will pafs through the extremities of the
other two; and the fides of the given triangle, being perpendicular to the three radii at their extremities, touch the circle (B. 3. pr. 16.), which is therefore inferibed in the given circle.
Q. E. D).

O defcribe a circle about a given triangle.

Make \longrightarrow--m....n." and
=-eon= (B. I. pr. Io.)

From the points of bifection draw monvorese $\perp \longrightarrow$ and refpectively (B. I. pr. II.), and from their point of concourfe draw
 and defcribe a circle with any one of them, and it will be the circle required.

In like manner it may be flown that
therefore a circle defcribed from the concourfe of thee three lines with any one of them as a radius will circumferibe the given triangle.

> Q.E.D.

infcribe a fquare.

Draw the two diameters of the circle \perp to each other, and draw

For, fince
 a femicircle, they are right angles (B. 3. pr. 31),

$$
\begin{aligned}
& \therefore \longrightarrow \text { (B. ı. pr. 28): } \\
& \text { and in like manner } \longrightarrow \text { || } \\
& \text { And becaufe } \square \text { (conft.), and }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore=\square \text { (B. г. pr. 4) ; }
\end{aligned}
$$

and fince the adjacent fides and angles of the parallelogram
 are equal, they are all equal
(B. r. pr. 34);
and \therefore
 infcribed in the given circle, is a fquare.
Q. E. D.

BOUT a given circle to circumscribe

a Square.

Draw two diameters of the given circle perpendicular to each other, and through their extremities draw Lu, \quad, and tangents to the circle ;
and

is a fquare.

a right angle, (B. 3. pr. 18.)

\therefore I| .ono-o.o; in the fame manner it can be demonftrated that $\|$............ , and alfo that and $\|$ =--w....;

they are all right angles (B. 1. pr. 34):
it is also evident that and $=$ are equal.

> Q. E. D.

(B. i. pr. 3 I.)

In like manner, it can be fhown that

are equilateral parallelograms ;
and therefore if a circle be defcribed from the concourle of there lines with any one of them as radius, it will be inferibed in the given fquare. (B. 3. pr. 16.)
Q. E. D.

or
is bifected: in like manner it can be fhown

\therefore — $=$; (B. ı. pr. 6.)

and in like manner it can be proved that

If from the confluence of thefe lines with any one of them as radius, a circle be defcribed, it will circumfcribe the given fquare.

> Q. E. D.

O construct an ifofceles triangle, in which each of the angles at the base frail be double of the vertical angle.

Take any ftraight line and divide it fo that

(B. 2. pr. II.)

With -..... as radius, defcribe

in it from the extremity of the radius,,$=\square$
(B. 4. pr. 1) ; draw

Then

For, draw and defcribe

(B. 1. pr. 32.)

$$
\therefore \Delta=\boldsymbol{\int}_{(\mathrm{B}, \ldots, p, 5,5)}
$$

 the bafe is double of the vertical angle.
Q. E. D.

N a given circle
to infcribe an equilateral and equiangular pentagon.

Conftruct an ifofceles triangle, in which each of the angles at the bafe Thall be double of the angle at the vertex, and infcribe in the given

circle a triangle equiangular to it ; (B. 4. pr.2.)

(B. I. pr. 9.)
draw \qquad , \longrightarrow and

Becaufe each of the angles
 the arcs upon which they ftand are equal, (B. 3. pr. 26.) and \therefore, and
-0.nvenm which fubtend thefe arcs are equal (B. 3.pr.29.) and \therefore the pentagon is equilateral, it is alfo equiangular, as each of its angles ftand upon equal arcs. (B. 3. pr. 27).
Q.E.D.

O defcribe an equilateral and equiangular pentagon about a given circle

Draw five tangents through the vertices of the angles of any regular pentagon infcribed in the given

Thefe five tangents will form the required pentagon.

$$
\begin{aligned}
& \text { Draw }\left\{\begin{array}{l}
--0-0=0 \\
-0-00000
\end{array}\right\} \text {. In } \text { and } \\
& \longrightarrow=\text { (B. ı. pr. 47), } \\
& \text {-n-w.... }=\cdots \cdots, \text {, and } \text { common; } \\
& \therefore \nabla=\square \text { and } \nabla=\langle\text { (B. г.pr. 8.) } \\
& \therefore \square=\mathrm{twice} \quad \text {, and } \quad=\text { twice } \quad ;
\end{aligned}
$$

In the fame manner it can be demonftrated that

$$
\begin{gathered}
\square=\text { twice } \\
\text { but } \quad=\begin{array}{l}
\text { and } \\
=
\end{array} \quad \text { (B. 3. pr. 27) }
\end{gathered}
$$

\therefore their halves $\Delta=D$, alfo $\square=\square$, and -acunas" common;

\therefore —— \quad twice ——
In the fame manner it can be demonftrated that --*- $=$ twice

In the fame manner it can be demonftrated that the other fides are equal, and therefore the pentagon is equi, lateral, it is alfo equiangular, for

demonftrated that the other angles of the defcribed pentagon are equal.
Q. E. D

O infcribe a circle in a given equiangular and equilateral pentagon.

Let and equilateral pentagon; it is requires to infcribe a circle in it.

Make $\square=\Delta$, and $\Delta=\square$ (B. . . pr. 9.)

and common to the two triangles

And becaufe $=\square=$ twice
\therefore = twice

is bifected by
In like manner it may be demonftrated that is bifected by =ereoron, and that the remaining angle of the polygon is bifected in a fimilar manner.

Draw,$\ldots=-=-$. , \&xc. perpendicular to the fides of the pentagon.

Then in the two triangles

In the fame way it may be fhown that the five perpendiculars on the fides of the pentagon are equal to one another.

Defcribe with any one of the perpendiculars as radius, and it will be the infcribed circle required. For if it does not touch the fides of the pentagon, but cut them, then a line drawn from the extremity at right angles to the diameter of a circle will fall within the circle, which has been fhown to be abfurd. (B. 3. pr. 16.)
2.E. D.

O defcribe a circle about a given equilateral and equiangular pentagon.

Bifect

and
by
from the point of fection, draw
\qquad
and fince in

(B. I. pr. 6) ;

In like manner it may be proved that

Therefore if a circle be defcribed from the point where thefe five lines meet, with any one of them as a radius, it will circumfcribe the given pentagon.
Q. E. I).

O infcribe an equilateral and equiangular hexagon in a given circle

From any point in the circumference of the given circle defcribe
 through its centre, and draw the diameters ——— and — draw
 required hexagon is infcribed in the given circle.

Since - paffes through the centres of the circles,
 are equilateral triangles, hence $=\square=$ one-third of two right angles; (B. 1. pr. 32) but

(B. I. pr. I 3) ;

(B. 1. pr. 32), and the angles vertically oppofite to thefe are all equal to one another (B. I. pr. 15), and ftand on equal arches (B. 3. pr. 26), which are fubtended by equal chords (B. 3. pr. 29) ; and fince each of the angles of the hexagon is double of the angle of an equilateral triangle, it is alfo equiangular.

O infcribe an equilateral and equiangular quindecagon in a given circle.

Let \longrightarrow and be
the fides of an equilateral pentagon infcribed in the given circle, and the fide of an inscribed equilateral triangle.

The arc fubtended by $\}=\frac{1}{3}=\frac{5}{15}\left\{\begin{array}{c}\text { of the whole } \\ \text { circumference. }\end{array}\right.$ Their difference $=\frac{1}{15}$
\therefore the arc fubtended by $-\ldots=\frac{1}{15}$ difference of the whole circumference.

Hence if ftraight lines equal to be placed in the circle (B. 4. pr. i), an equilateral and equiangular quindecagon will be thus infcribed in the circle.
Q.E. D.

BOOKV.

DEFINITIONS.

I.
 LESS magnitude is faid to be an aliquot part or fubmultiple of a greater magnitude, when the lefs meafures the greater; that is, when the lefs is contained a certain number of times exactly in the greater.

II.

A greater magnitude is faid to be a multiple of a lefs, when the greater is meafured by the lefs; that is, when the greater contains the lefs a certain number of times exactly.

III.

Ratio is the relation which one quantity bears to another of the fame kind, with refpect to magnitude.
IV.

Magnitudes are faid to have a ratio to one another, when they are of the fame kind; and the one which is not the greater can be multiplied fo as to exceed the other.

The other definitions will be given throughout the book where their aid is firft required.

AXIOMS.

I.

QUIMULTIPLES or equifubmultiples of the fame, or of equal magnitudes, are equal.

$$
\begin{aligned}
& \text { If } A=B, \text { then } \\
& \text { twice } A=\text { twice } B, \text { that is, } \\
& 2 A=2 B ; \\
& 3 A=3 B ; \\
& 4 A=4 B ; \\
& \& c c . \& c . \\
& \text { and } \frac{1}{2} \text { of } A=\frac{1}{2} \text { of } B ; \\
& \frac{1}{3} \text { of } A=\frac{1}{3} \text { of } B ; \\
& \& c c . \& c .
\end{aligned}
$$

II.

A multiple of a greater magnitude is greater than the fame multiple of a lefs.

$$
\begin{gathered}
\text { Let A ᄃ } \mathrm{B}, \text { then } \\
2 \mathrm{~A} \sqsubset 2 \mathrm{~B} ; \\
3 \mathrm{~A} \sqsubset 3 \mathrm{~B} ; \\
4 \mathrm{~A} \sqsubset 4 \mathrm{~B} ; \\
\& \mathrm{c} .8 \mathrm{c} \text {. }
\end{gathered}
$$

III.

That magnitude, of which a multiple is greater than the fame multiple of another, is greater than the other.

> Let $2 \mathrm{~A} \sqsubset^{2} \mathrm{~B}$, then
> $\mathrm{A} \sqsubset^{\mathrm{B}}$;
> or, let $3 \mathrm{~A} \sqsubset_{3} \mathrm{~B}$, then
> $\mathrm{A} \sqsubset^{\mathrm{B}}$;
> or, let $m \mathrm{~A} ⿷^{\mathrm{A}} \mathrm{B}$, then
> B. F any number of magnitudes be equimultiples of as many others, each of each: what multiple soever any one of the firft is of its part, the fame multiple Shall of the firft magnitudes taken together be of all the others taken together.

Then is evident that
 which that $\square \square \square \square$ is of \square; becaufe there are as many magnitudes

as there are in $\square \square \square \square \square=\square$.
The fame demonftration holds in any number of magnitudes, which has here been applied to three.
\therefore If any number of magnitudes, \&c.

F the firft magnitude be the fame multiple of the fecond that the third is of the fourth, and the fifth the fame multiple of the fecond that the fixth is of the fourth, then flall the firft, together with the fifth, be the fame multiple of the fecond that the third, together with the fixth, is of the fourth.

Let , the firft, be the fame multiple of , the fecond, that $\bigcirc \bigcirc \bigcirc$, the third, is of \bigcirc, the fourth; and let , the fifth, be the fame multiple of , the fecond, that $0 \bigcirc 00$, the fixth, is of 0 , the fourth.

Then it is evident, that $\{0\}$, the firf and fifth together, is the fame multiple of , the fecond, that $\left\{\begin{array}{c}000 \\ 0000\end{array}\right\}$, the third and fixth together, is of the fame multiple of \bigcirc, the fourth; becaufe there are as many magnitudes in $\{00\}=0$ as there are in $\left\{\begin{array}{c}000 \\ 0000\end{array}\right\}=0$.
\therefore If the firft magnitude, \&cc.

F the firft of four magnitudes be the fame multiple of the fecond that the third is of the fourth, and if any equimultiples whatever of the firft and third be taken, thofe Jhall be equimultiples; one of the fecond, and the other of the fourth.

The First.
The Second.
 which $\{$ The Third. $\}$ is of ;

Then it is evident,

150 BOOK V. PROP. III. THEOR.

The fame reafoning is applicable in all cafes.
\therefore If the firft four, \&xc.

DEFINITION V.

Four magnitudes, , , 亩, , are faid to be proportionals when every equimultiple of the firft and third be taken, and every equimultiple of the fecond and fourth, as,

\&c.

$\& c$.

\&c.

\&z.

Then taking every pair of equimultiples of the firft and third, and every pair of equimultiples of the fecond and fourth,

That is, if twice the firft be greater, equal, or lefs than twice the fecond, twice the third will be greater, equal, or lefs than twice the fourth; or, if twice the firft be greater, equal, or lefs than three times the fecond, twice the third will be greater, equal, or lefs than three times the fourth, and so on, as above expreffed.

\&c.
\square
\&c.

In other terms, if three times the firft be greater, equal, or lefs than twice the fecond, three times the third will be greater, equal, or lefs than twice the fourth; or, if three times the firft be greater, equal, or lefs than three times the fecond, then will three times the third be greater, equal, or lefs than three times the fourth; or if three times the firft be greater, equal, or lefs than four times the fecond, then will three times the third be greater, equal, or lefs than four times the fourth, and so on. Again,

And so on, with any other equimultiples of the four magnitudes, taken in the fame manner.

Euclid expreffes this definition as follows:-
The firft of four magnitudes is faid to have the fame ratio to the fecond, which the third has to the fourth, when any equimultiples whatfoever of the firft and third being taken, and any equimultiples whatfoever of the fecond and fourth; if the multiple of the firft be lefs than that of the fecond, the multiple of the third is alfo lefs than that of the fourth; or, it the multiple of the firft be equal to that of the fecond, the multiple of the third is alfo equal to that of the fourth; or, ir the multiple of the firft be greater than that of the fecond, the multiple of the third is alfo greater than that of the fourth.

In future we fhall exprefs this definition generally, thus:

Then we infer that , the firt, has the fame ratio to \square, the fecond, which \rangle, the third, has to \square the fourth : expreffed in the fucceeding demonftrations thus:

$\mathrm{M} \subset \sqsubset,=$ or $\sqsupset m \square$, then will

$$
M \vee[\subset,=\text { or } \exists m
$$

That is, if the firft be to the fecond, as the third is to the fourth ; then if M times the firft be greater than, equal to, or lefs than m times the fecond, then fhall M times the third be greater than, equal to, or lefs than m times the fourth, in which M and m are not to be confidered particular multiples, but every pair of multiples whatever; nor are fuch marks as $\bigcirc, \square, \square, \& c$. to be confidered any more than reprefentatives of geometrical magnitudes.

The fudent fhould thoroughly underftand this definition before proceeding further. F the frrft of four magnitudes have the fame ratio to the fecond，which the third has to the fourth，then any equimultiples whatever of the firft and third shall have the fame ratio to any equimultiples of the fecond and fourth；viz．，the equimultiple of the firft Shall have the fame ratio to that of the fecond，which the equi－ multiple of the third has to that of the fourth．
 every equimultiple of 3 and 3 are equimultiples of and \rangle ，and every equimultiple of $2 \square$ and $2 \square$ ，are equimultiples of \square and （B． 5, pr．3．）

That is，M times $3 \bigcirc$ and M times 3 are equimulti－ ples of and ，and m times $2 \square$ and $m 2 \square$ are equi－ multiples of $2 \square$ and $2 \square$ ；but $\square: \square: \square$ （hyp）；\therefore if $\mathrm{M}_{3} \bigcirc$ ᄃ，二，or $コ \mathrm{~m}_{2}$ ■，then M $_{3}$ ᄃ，ニ，or コm2（def．5．）
and therefore $3 \bigcirc: 2 \boldsymbol{\square} \boldsymbol{:} 3 \boldsymbol{2}$（def．5．）
The fame reafoning holds good if any other equimul－ tiple of the firft and third be taken，any other equimultiple of the fecond and fourth．
\therefore If the firft four magnitudes，\＆cc．

F one magnitude be the fame multiple of another, which a magnitude taken from the firgl is of a magnitude taken from the other, the remainder foal be the fame multiple of the remainder, that the whole is of the whole.

$$
\text { and } \square=\mathrm{M}^{\prime} \mathrm{m}
$$

$\therefore \bigcirc \mathrm{O}^{\circ}=\mathrm{M}^{\prime}($ minus $)$,

$$
\operatorname{mand}: O_{0}=M .
$$

\therefore If one magnitude, \&c.

F two magnitudes be equimultiples of two others, and if equimultiples of thefe be taken from the firft two, the remainders are either equal to the fe others, or equimultiples of them.

Let $\bigcirc \bigcirc=\mathrm{M}^{\prime}$; and $\bigcirc \bigcirc=\mathrm{M}^{\prime} \stackrel{\text {; }}{ }$
then
 minus m^{\prime} ㅌ M^{\prime} minus $m^{\prime}=\left(\mathrm{M}^{\prime}\right.$ minus $\left.m^{\prime}\right)$, and $\bigcirc \bigcirc$ minus $m^{\prime} \wedge=\mathrm{M}^{\prime} \wedge$ minus $m^{\prime} \wedge=$ (M^{\prime} minus $\left.m^{\prime}\right) ~ \&$ 。

Hence, (M^{\prime} minus $\left.m^{\prime}\right)$ and $\left(\mathrm{M}^{\prime}\right.$ minus $\left.m^{\prime}\right) \wedge$ are equimultiples of and Δ, and equal to and Δ, when M^{\prime} minus $m^{\prime}=\mathrm{I}$.
\therefore If two magnitudes be equimultiples, \&c.

F the firgl of the four magnitudes has the fame ratio to the fecond which the third has to the fourth, then if the firft be greater than the fecond, the third is alfo greater than the fourth; and if equal, equal; if lefs, lefs.

Let : : : therefore, by the fifth definition, if $\bigcirc \square \square$, then will $\square \square \square$; but if $\square \square$, then $\square \square \square$
and $\square \square \square$
and $\therefore \square \square$

Similarly, if \bigcirc, or \exists, then will $\square=$, or \beth 。
\therefore If the firft of four, \& c.

DEFINITION XIV.

Geometricians make ufe of the technical term " Invertendo," by inverfion, when there are four proportionals, and it is inferred, that the fecond is to the firft as the fourth to the third.

Let $A: B: C: D$, then, by "invertendo" it is inferred $B: A:: D: C$.

F four magnitudes are proportionals，they are pro－ portionals alfo when taken inverfely．

Let $\square: \square:$ ：\quad ， then，inverfely，$\square: \square: \square:$

If M コmワ，then M■コm by the fifth definition．

Let $\mathrm{M} \sqsupset \sqsupset \mathrm{m} \square$ ，that is，$m \square \sqsubset \mathrm{M}$ ，
$\therefore \mathrm{M} \square \mathrm{m}$ ，or，$m \triangleleft \sqsubset \mathrm{M} \square$ ；
\therefore if $m \square \sqsubset M \square$ ，then will $m \diamond \sqsubset M \square$ ．
In the fame manner it may be fhown，

$$
\begin{aligned}
\text { that if } m \square & =\text { or } コ \mathrm{M} \\
\text { then will } m & =\text { or } \sqsupset \mathrm{M}
\end{aligned}
$$

and therefore，by the fifth definition，we infer

$$
\begin{aligned}
& \text { that } \square: \\
& \text { agnitudes, \&c. }
\end{aligned}
$$

F the firgt be the fame multiple of the fecond, or the fame part of it, that the third is of the fourth; the firgt is to the fecond, as the third is to the fourth.

Let , the firft, be the fame multiple of 0 , the fecond, that , the third, is of , the fourth.
 that is of (according to the hypothefis); and $M \square$ is taken the fame multiple of \square that M is of
\therefore (according to the third propofition),
 is the fame multiple of

Therefore, if $M \square$ be of a greater multiple than
 then M will be ᄃ, = or コm ${ }^{m}$;
\therefore by the fifth definition,
 that is of

In this cafe alfo

For, becaufe

that is of .

Therefore, by the preceding cafe,

by propofition B.
\therefore If the firft be the fame multiple, \&c.

F the firgt be to the fecond as the third to the fourth, and if the firfl be a multiple, or a part of the fecond; the third is the fame multiple, or the fame part of the fourth.

and firft, let
 be a multiple \square; fhall be the fame multiple of

Whatever multiple is of \square take 88 the fame multiple of then, becaufe $: \square::$
 and of the fecond and fourth, we have taken equimultiples,

$: \bigcirc:: \bigcirc: \bigcirc \bigcirc$, but (cont.),
 $=\square \therefore$ (B. 5. pr. A.) $=\bigcirc \bigcirc$
 and
 is the fame multiple of
 that
 is of \square.
 Next, let
 \square :
 $:: \sqrt{7}$
 and aldo a part of
 then hall be the fame part of
 Inverfely (B. 5.),
 $: \square:: \vee \gg$ but is a part of

 that is, \square is a multiple of \square;\therefore by the preceding cafe, \qquad is the fame multiple of that is, \square is the fame part of
that \square is of
\therefore If the firft be to the fecond, \&c.

QUAL magnitudes have the fame ratio to the fame magnitude，and the fame has the fame ratio to equal magnitudes．

Let $=\square$ and \square any other magnitude； then
 and \square $: O=\square$ Becaule $=\downarrow$ ，
$\therefore M-M$ ；

From the foregoing reafoning it is evident that，

$$
\begin{aligned}
& \text { if } m \square \sqsubset,=\text { or } \exists \mathrm{M} \text {, then } \\
& m \square \text { ㄷ, 二 or コ M } \\
& \therefore \square: O=\square: \text { (B. 5. def. 5). }
\end{aligned}
$$

\therefore Equal magnitudes，\＆c．

DEFINITION VII．

When of the equimultiples of four magnitudes（taken as in the fifth definition），the multiple of the firft is greater than that of the fecond，but the multiple of the third is not greater than the multiple of the fourth；then the firft is faid to have to the fecond a greater ratio than the third magnitude has to the fourth：and，on the contrary，the third is faid to have to the fourth a lefs ratio than the firft has to the fecond．

If，among the equimultiples of four magnitudes，com－ pared as in the fifth definition，we fhould find $\diamond \diamond \downarrow \downarrow$＝or コロワワワ，or if we fhould find any particular multiple M^{\prime} of the firft and third，and a particular multiple m^{\prime} of the fecond and fourth，fuch， that M^{\prime} times the firft is $\square m^{\prime}$ times the fecond，but M^{\prime} times the third is not $\square m^{\prime}$ times the fourth，i．e．$=$ or $\exists m^{\prime}$ times the fourth；then the firft is faid to have to the fecond a greater ratio than the third has to the fourth； or the third has to the fourth，under fuch circumftances，a lefs ratio than the firft has to the fecond ：although feveral other equimultiples may tend to fhow that the four mag－ nitudes are proportionals．

This definition will in future be expreffed thus：－

In the above general expreffion， M^{\prime} and m^{\prime} are to be confidered particular multiples，not like the multiples M
and m introduced in the fifth definition, which are in that definition confidered to be every pair of multiples that can be taken. It muft alfo be here obferved, that $\square, \square, \square$, and the like fymbols are to be confidered merely the reprefentatives of geometrical magnitudes.

In a partial arithmetical way, this may be fet forth as follows:

Let us take the four numbers, $8,7,10$, and 9 .

Firft. 8	Second. 7	Third. 10	Fourth. 9
16	14	20	18
24	21	30	27
32	28	40	36
40	35	50	45
48	42	60	54
56	49	70	63
64	56	80	72
72	63	90	81
80	70	100	90
88	77	110	99
96	84	120	108
104	91	130	117
112	98	140	126
$8 c$.	$8 c$.	$8 c$	$8 c$.

Among the above multiples we find 16 ᄃ 14 and ᄃ 18; that is, twice the firt is greater than twice the fecond, and twice the third is greater than twice the fourth; and ${ }^{16} \boldsymbol{コ}^{21}$ and $20 \sqsupset 27$; that is, twice the firft is lefs than three times the fecond, and twice the third is lefs than three times the fourth; and among the fame multiples we can find ${ }_{72}$ ᄃ $_{56}$ and 90 당 : that is, 9 times the firft is greater than 8 times the fecond, and 9 times the third is greater than 8 times the fourth. Many other equimul-
tiples might be selected, which would tend to fhow that the numbers $8,7,10,9$, were proportionals, but they are not, for we can find a multiple of the firft \square a multiple of the fecond, but the fame multiple of the third that has been taken of the firft not \square the fame multiple of the fourth which has been taken of the fecond; for inftance, 9 times the firft is $\square 10$ times the fecond, but 9 times the third is not $\square 10$ times the fourth, that is, $72 \square 70$, but 90 not $\square 90$, or 8 times the firft we find $\square 9$ times the fecond, but 8 times the third is not greater than 9 times the fourth, that is, $64 \square 63$, but 80 is not $\square 81$. When any fuch multiples as thefe can be found, the firft (8) is faid to have to the fecond (7) a greater ratio than the third (80) has to the fourth (9), and on the contrary the third (10) is faid to have to the fourth (9) a lefs ratio than the firft (8) has to the fecond (7).

F unequal magnitudes the greater has a greater ratio to the fame than the lefs bas: and the fame magnitude has a greater ratio to the lefs than it has to the greater.

> Let and \square be two unequal magnitudes, and any other.

We fhall firft prove that which is the greater of the two unequal magnitudes, has a greater ratio to than \quad, the lefs, has to ;

$$
\text { that is, } \Delta: \bigcirc \subset \square: \bigcirc \text {; }
$$

 fuch, that $\mathrm{M}^{\prime} \Delta$ and $\mathrm{M}^{\prime} \square$ fhall be each $\square \bigcirc$; alfo take m^{\prime} the leaft multiple of , which will make $m^{\prime} \bigcirc \subset \mathrm{M}^{\prime} \square=\mathrm{M}^{\prime} \square$;

$$
\therefore \mathrm{M}^{\prime} \square \text { is not } \square m^{\prime} \bigcirc \text {, }
$$

$$
\text { but } \mathrm{M}^{\prime} \text { is } \sqsubset n^{\prime} \text {, for, }
$$

as $m^{\prime} \bigcirc$ is the firft multiple which firft becomes $\sqsubset \mathrm{M}^{\prime} \square$, than (m^{\prime} minus I) or m^{\prime} minus is not $\left[\mathrm{M}^{\prime} \square\right.$, and is not $ᄃ M^{\prime} \Delta$,
$\therefore m^{\prime} \bigcirc$ minus \bigcirc mult be $コ \mathrm{M}^{\prime} \square+\mathrm{M}^{\prime} \Delta$; that is, $m^{\prime} \bigcirc$ muft be $\sqsupset \mathrm{M}^{\prime}{ }^{\boldsymbol{\wedge}}$;
$\therefore \mathrm{M}^{\prime}$ is $\square m^{\prime} \square$; but it has been fhown above that
$M^{\prime} \square$ is not $\square m^{\prime} \bigcirc$, therefore, by the feventh definition,
\square has to a greater ratio than

Next we Chall prove that \bigcirc has a greater ratio to \square, the lefs, than it has to 4 , the greater ; or, $\quad \square$ ■ : \quad. Take $m^{\prime} \bigcirc, \mathrm{M}^{\prime} \square, m^{\prime} \bigcirc$, and $\mathrm{M}^{\prime} \square$, the fame as in the firft cafe, fuch, that $\mathrm{M}^{\prime} \Delta$ and $\mathrm{M}^{\prime} \square$ will be each $\square \bigcirc$, and $m^{\prime} \bigcirc$ the leaft multiple of , which firft becomes greater than $\mathrm{M}^{\prime} \square=\mathrm{M}^{\prime} \square$. $\therefore m^{\prime} \bigcirc$ minus is not $\square \mathrm{M}^{\prime} \square$, and is not $\square \mathrm{M}^{\prime} \Delta$; confequently $m^{\prime} \bigcirc$ minus $\bigcirc+\bigcirc$ is $\exists \mathrm{M}^{\prime} \square+\mathrm{M}^{\prime} \star$;
$\therefore m^{\prime} \bigcirc$ is $\sqsupset \mathrm{M}^{\prime} \square$, and \therefore by the feventh definition, has to a greater ratio than has to \square.
\therefore Of unequal magnitudes, \&c.
The contrivance employed in this propofition for finding among the multiples taken, as in the fifth definition, a multiple of the firit greater than the multiple of the fecond, but the fame multiple of the third which has been taken of the firft, not greater than the fame multiple of the fourth which has been taken of the fecond, may be illuftrated numerically as follows:-

The number 9 has a greater ratio to 7 than ${ }^{8}$ has to 7 : that is, $9: 7$ 口 $^{8}: 7$; or, 8 +1:7ロ8:7.

The multiple of 1 , which firft becomes greater than 7 , is 8 times, therefore we may multiply the firft and third by $8,9,10$, or any other greater number; in this cafe, let us multiply the firft and third by 8 , and we have $64+8$ and 64 : again, the firt multiple of 7 which becomes greater than 64 is 10 times; then, by multiplying the fecond and fourth by 10 , we thall have 70 and 70 ; then, arranging thefe multiples, we have-

8 times the first.	10 times the second.	8 times $64+8$	70

Confequently $64+8$, or 72 , is greater than -0 , but 01 is not greater than $70, \therefore$ by the feventh definition, 9 has a greater ratio to 7 than 8 has to 7 .

The above is merely illuftrative of the foregoing demonftration, for this property could be fhown of thefe or other numbers very readily in the following manner; becaufe, if an antecedent contains its confequent a greater number of times than another antecedent contains its confequent, or when a fraction is formed of an antecedent for the numerator, and its confequent for the denominator be greater than another fraction which is formed of another antecedent for the numerator and its confequent for the denominator, the ratio of the firft antecedent to its confequent is greater than the ratio of the laft antecedent to its confequent.

Thus, the number 9 has a greater ratio to 7 , than 8 has to 7 , for $\frac{9}{7}$ is greater than $\frac{8}{7}$.

Again, $17: 19$ is a greater ratio than $13: 15$, becaufe $\frac{17}{19}=\frac{17 \times 15}{19 \times 15}=\frac{255}{285}$, and $\frac{13}{15}=\frac{13 \times 19}{15 \times 19}=\frac{247}{285}$, hence it is evident that $\frac{255}{285}$ is greater than $\frac{247}{285}, \therefore \frac{17}{19}$ is greater than
$\frac{13}{15}$, and, according to what has been above fhown, 17 has to 19 a greater ratio than 13 has to 15 .

So that the general terms upon which a greater, equal, or lefs ratio exifts are as follows :-

If $\frac{A}{B}$ be greater than $\frac{C}{D}, A$ is faid to have to B a greater ratio than C has to D; if $\frac{A}{B}$ be equal to $\frac{C}{D}$, then A has to B the fame ratio which C has to D; and if $\frac{A}{B}$ be lefs than $\frac{C}{D}$, A is faid to have to B a lefs ratio than C has to D.

The ftudent fhould underftand all up to this propofition perfectly before proceeding further, in order fully to comprehend the following propofitions of this book. We therefore ftrongly recommend the learner to commence again, and read up to this flowly, and carefully reafon at each ftep, as he proceeds, particularly guarding againt the mifchievous fyftem of depending wholly on the memory. By following thefe inftructions, he will find that the parts which ufually prefent confiderable difficulties will prefent no difficulties whatever, in profecuting the fudy of this important book.

AGNITUDES which have the fame ratio to the fame magnitude are equal to one another; and thofe to which the fame magnitude has the fame ratio are equal to one another.

which is abfurd according to the hypothefis.

$$
\therefore \text { is not } ᄃ \text {. }
$$

In the fame manner it may be fhown, that

Again, let $\square: \vee:: \square: 0$, then will $\downarrow=0$.

$$
\text { For (invert.) }\rangle: \square:: \square: \square,
$$

therefore, by the firft cafe, $\rangle=0$.
\therefore Magnitudes which have the fame ratio, \&c.
This may be fhown otherwife, as follows :-
Let $A: B=A: C$, then $B=C$, for, as the fraction $\frac{A}{B}=$ the fraction $\frac{A}{C}$, and the numerator of one equal to the numerator of the other, therefore the denominator of thefe fractions are equal, that is $B=C$.

Again, if $B: A=C: A, B=C$. For, as $\frac{B}{A}={ }_{A}^{C}$, B muft $=\mathrm{C}$. HAT magnitude which has a greater ratio than another has unto the fame magnitude, is the greater of the two: and that magnitude to which the fame has a greater ratio than it has unto another magnitude, is the lefs of the two.

For if not, let $\square=$ or \exists;
then, $\square: \square=0: \square$ (B. $5 \cdot \mathrm{pr} \cdot 7$) or
$: \square 1$ (B. 5. pr. 8) and (invert.),
which is abfurd according to the hypothefis.

$\therefore \square$ mult be $\sqsubset 0$.

For if not, \bigcirc muft be $[$ or $=$

\therefore That magnitude which has, \&c.

ATIOS that are the fame to the fame ratio，are the fame to each other．

Let $\downarrow: \square=0: \square$ and $\square: \square=\Delta: \bullet$ ， then will $\quad \square=\Delta: \bullet$ ．

$$
\begin{aligned}
& \text { For if } \mathrm{M} \downarrow \sqsubset,=\text {, or } \sqsupset m \square \text {, } \\
& \text { then } \mathrm{M} \bigcirc \sqsubset,=\text {, or } \beth m \text {, } \\
& \text { and if } \mathrm{M} \bigcirc \sqsubset, 二 \text {, or } \sqsupset m^{2} \text {, } \\
& \text { then } \mathrm{M} \Delta \text { ᄃ, 二, or } コ m \bullet \text {, (B. 5. def. 5); }
\end{aligned}
$$

and \therefore（B． 5. def． 5 ）$: \square=\Delta: \bullet$ ．
\therefore Ratios that are the fame，\＆cc． F any number of magnitudes be proportionals, as one of the antecedents is to its confequent, Jo fball all the antecedents taken together be to all the confequents.

For if M ■ m, then $\mathrm{M} \square \sqsubset m \bigcirc$, and $\mathrm{M} \wedge \square \square \mathrm{M} \bullet \square m$, alfo M $\triangle m$ • (B. 5. def. 5.)

Therefore, if $M \square m$, then will $M \square+M \square+M \wedge+M+1 M \Delta$, or $\mathrm{M}(\square+\square+\Delta+\bullet+\Delta)$ be greater than $m \bigcirc+m \bigcirc+m \square+m+m \bullet$, or $m(0+0+\square+\nabla+0)$.

In the fame way it may be hown, if M times one of the antecedents be equal to or lefs than m times one of the confequents, M times all the antecedents taken together, will be equal to or lefs than m times all the confequents taken together. Therefore, by the fifth definition, as one of the antecedents is to its confequent, fo are all the antecedents taken together to all the confequents taken together.
\therefore If any number of magnitudes, \&c. F the firft has to the Second the fame ratio which the third has to the fourth, but the third to the fourth a greater ratio than the fifth has to the fixth; the firft faall alfo have to the fecond a greater ratio than the fifth to the $\sqrt{2 x}$ int .

$$
\begin{gathered}
\text { Let } \nabla: \oslash=\square: \diamond, \text { but } \square: \triangleright \square \bigcirc: \bigcirc, \\
\text { then } \square: \square \sqsubset \bigcirc: \bigcirc
\end{gathered}
$$

For, becaufe $\square: \sqsubset \bigcirc: \bigcirc$, there are fome multiples $\left(\mathrm{M}^{\prime}\right.$ and $\left.m^{\prime}\right)$ of \square and \bigcirc, and of \bigcirc and \bigcirc, fuch that $\left.\mathrm{M}^{\prime} \square \sqsubset m^{\prime}\right\rangle$,
but $\mathrm{M}^{\prime} \bigcirc$ not $\sqsubset m^{\prime} \bigcirc$, by the feventh definition.
Let there multiples be taken, and take the fame multiples of \square and \square.
\therefore (B. 5. def. 5.) if M^{\prime} ■, $=$, or $コ m^{\prime} \square$; then will M^{\prime} ㄷ, 二, or \boldsymbol{m}^{\prime} but M' ■ $m^{\prime}>$ (conftruction); $\therefore \mathrm{M}^{\prime}$ ■ $m^{\prime} \square$, but $\mathrm{M}^{\prime} \bigcirc$ is not $\sqsubset m^{\prime} \bigcirc$ (conftruction); and therefore by the feventh definition,

$$
\nabla: \bigcirc \subset \bigcirc:
$$

\therefore If the firft has to the fecond, \&c.

F the firgt has the fame ratio to the fecond which the third has to the fourth; then, if the firft be greater. than the third, the fecond flall be greater than the fourth; and if equal, equal; and if lefs, lefs.

$$
\begin{gathered}
\text { Let } \square: \square:: \square: \diamond \text {, and firft fuppore } \\
\square \square \text {, then will } \square \square
\end{gathered}
$$

For $\square: \square \square \square: \square$ (B. 5. pr. 8), and by the hypothefis, $\square: \square=\square: \downarrow$;

$$
\begin{aligned}
& \therefore \square: \square \square: \square(\text { B. } 5 \cdot \text { pr. } 13), \\
& \therefore \vee \square(\text { B. } 5 \cdot \text { pr. го. }), \text { or } \square \sqsubset
\end{aligned}
$$

$$
\text { Secondly, let } \square=\square, \text { then will } \square=\langle
$$

$$
\begin{gathered}
\text { For } \square: \square=\square: \square \text { (B. } 5 \cdot \text { pr. } 7), \\
\text { and } \square: \square=\square:(\text { (hyp. }) \\
\therefore \square: \square=\square \text { (B. } 5 \cdot \text { pr. 11) } \\
\text { and } \therefore \square=\forall \text { (B. } 5, \text { pr. 9). }
\end{gathered}
$$

Thirdly, if \downarrow, then will $\square \sqsupset$; becaufe $\square \square$ and $\square: \square=\square$;
\therefore ᄃ \bigcirc, by the firt cafe, that is, \sqsupset •
\therefore If the firft has the fame ratio, \&c.

AGNITUDES have the fame ratio to one another which their equimultiples bave.

Let and \square be two magnitudes; then, $\square: \mathrm{M}^{+} \bigcirc: \mathrm{M}^{\prime} \square_{\square}$.

And as the fame reafoning is generally applicable, we have : $\square: \mathrm{M}^{\prime} \bigcirc: \mathrm{M}^{\prime} \square$.
\therefore Magnitudes have the fame ratio, \&c.

DEFINITION XIII.

The technical term permutando, or alternando, by permutation or alternately, is ufed when there are four proportionals, and it is inferred that the firft has the fame ratio to the third which the fecond has to the fourth; or that the firft is to the third as the fecond is to the fourth: as is fhown in the following propofition:-

It may be neceffary here to remark that the magnitudes , 》, —, muft be homogeneous, that is, of the fame nature or fimilitude of kind; we muft therefore, in fuch cafes, compare lines with lines, furfaces with furfaces, folids with folids, \&c. Hence the fudent will readily perceive that a line and a furface, a furface and a folid, or other heterogenous magnitudes, can never ftand in the relation of antecedent and confequent.

F four magnitudes of the fame kind be proportionals, they are alfo proportionals when taken alternately.

Let $\square: \square:: \square: \triangleleft$, then $\square: \square:: \square: \smile$.
For M \quad : $\square:: \square: \square$ (B. 5. pr. 15),
and $\mathrm{M} \nabla: \mathrm{M} \square:: \square:($ hyp. $)$ and (B. $5 \cdot \mathrm{pr} .1 \mathrm{I}$);
alfo $m: m$: $\quad \square:$ (B. 5. pr. 15) ;
$\therefore \mathrm{M} \nabla: \mathrm{M} \square:: m \square: m$ (B. 5. pr. 14), and \therefore if M ■ ᄃ, 二, or $\sqsupset m$, then will M $\square \sqsubset$, 二, or $\sqsupset m$ (B. 5. pr. 14); therefore, by the fifth definition,

$$
\nabla: \nabla:: \nabla: \triangleleft
$$

\therefore If four magnitudes of the fame kind, \&xc.

DEFINITION XVI.

Dividendo, by divifion, when there are four proportionals, and it is inferred, that the excefs of the firft above the fecond is to the fecond, as the excefs of the third above the fourth, is to the fourth.

$$
\begin{gathered}
\text { Let } A: B:: C: D \text {; } \\
\text { by "dividendo" it is inferred } \\
\text { A minus } B: B:: C \text { minus } D: D \text {. }
\end{gathered}
$$

According to the above, \AA is fuppofed to be greater than B, and C greater than D; if this be not the cafe, but to have B greater than A, and D greater than C, B and D can be made to ftand as antecedents, and A and C as confequents, by "invertion"

$$
\begin{gathered}
B: A:: D: C ; \\
\text { then, by "dividendo," we infer } \\
B \text { minus } A: A:: D \text { minus } C: C \text {. }
\end{gathered}
$$

F magnitudes, taken jointly, be proportionals, they Jhall alfo be proportionals when taken feparately: that is, if two magnitudes together have to one of them the fame ratio which two others have to one of thefe, the remaining one of the firft two fball have to the other the fame ratio which the remaining one of the laft two has to the other of thefe.

$$
\begin{gathered}
\text { Let }+\square: \square:: \square+\downarrow: \\
\text { then will } \square: \square:: \\
\square
\end{gathered}
$$

Take M ■m to each add M \square,

 then we have $M \square+M \square \square m \square+M \square$,$$
\text { or } M(\square+\square) \sqsubset(m+M) \square:
$$

but becaufe $\square \square: \square:: \square+\bigcirc:($ hyp.), and $M(\square+\square) \square(m+M) \square$;
$\therefore M(\square+\square) \square(m+M)\rangle$ (B. $5 \cdot$ def. 5);
$\therefore \mathrm{M} \square+\mathrm{M} \stackrel{\square}{ }+\mathrm{M}\rangle \mathrm{M}$;
$\therefore \mathrm{M} \square m$, by taking M$\rangle$ from both fides : that is, when $M \square \square m \square$, then $M \square \square m$

In the fame manner it may be proved, that if
$\mathrm{M} \square=$ or $\exists m \square$, then will $\mathrm{M} \square=$ or $\exists m \leqslant$;

$$
\text { and } \therefore: \square:: \square: \text { (B. 5. def. } 5 \text {). }
$$

\therefore If magnitudes taken jointly, \&c.

DEFINITION XV.

The term componendo, by compofition, is ufed when there are four proportionals ; and it is inferred that the firft together with the fecond is to the fecond as the third together with the fourth is to the fourth.

$$
\text { Let } A: B::(: D ;
$$

then, by the term "componendo," it is inferred that

$$
A+B: B:: \subset+D: D .
$$

By " invertion" B and D may become the firft and third, A and C the fecond and fourth, as
B : A::D :
then, by " componendo," we infer that

$$
B+A: A:: D+: C
$$ F magnitudes, taken feparately, be proportionals, they frall alfo be proportionals when taken jointly: that is, if the firft be to the fecond as the third is to the fourth, the firft and fecond together Jhall be to the fecond as the third and fourth together is to the fourth.

Let $\square: \square:: \square:$,
then
$+\square: \square$
1.
for if not, let $\nabla+\square: \square:: \square+\square: \bigcirc$,
fuppofing \bigcirc not $=\downarrow$;
$\therefore \square: \square: \square: \square$ (B. 5. pr. 17);
but $\square: \square:: \square: \triangleleft$ (hyp.);
$\therefore \square: \square: \square$ (B. 5. pr.11);
$\therefore=$ (B. $5 \cdot \mathrm{pr} .9$),
which is contrary to the fuppofition;

\therefore is not unequal to

 that is $=\varnothing$;$$
\therefore \nabla+\square: \square:: \square+\varnothing: \odot
$$

\therefore If magnitudes, taken feparately, \&c.

F a whole magnitude be to a whole, as a magnitude taken from the firft, is to a magnitude taken from the other; the remainder Jball be to the remainder, as the whole to the whole.

(B. $5 \cdot \mathrm{pr} .11$).
\therefore If a whole magnitude be to a whole, \&rc.

DEFINITION XVII.

The term "convertendo," by converfion, is made ufe of by geometricians, when there are four proportionals, and it is inferred, that the firft is to its excefs above the fecond, as the third is to its excefs above the fourth. See the following propofition :-

F four magnitudes be proportionals, they are alfo proportionals by converfion: that is, the firft is to its excefs above the fecond, as the third to its exce/s above the fourth.

\therefore If four magnitudes, \&c.

DEFINITION XVIII.

"Ex æquali" (fc. diftantiâ), or ex æquo, from equality of diftance: when there is any number of magnitudes more than two, and as many others, fuch that they are proportionals when taken two and two of each rank, and it is inferred that the firft is to the laft of the firft rank of magnitudes, as the firft is to the laft of the others: "of this there are the two following kinds, which arife from the different order in which the magnitudes are taken, two and two."

DEFINITION XIX.

"Ex æquali," from equality. This term is ufed fimply by itfelf, when the firft magnitude is to the fecond of the firft rank, as the firit to the fecond of the other rank; and as the fecond is to the third of the firft rank, fo is the fecond to the third of the other ; and fo on in order : and the inference is as mentioned in the preceding definition; whence this is called ordinate proportion. It is demonftrated in Book 5. pr. 22.

Thus, if there be two ranks of magnitudes, A, B, C, D, E, F, the firft rank, and L, M, λ, O, Q, the fecond, fuch that $A: B:: L: M, B: C:: M: \Lambda$, $C: D:: \lambda: Q, D: E:: \bigcirc: P, E: F:: P: Q$; we infer by the term "ex æquali" that

$$
A: F:: L: Q
$$

DEFINITION XX.

"Ex æquali in proportione perturbatâ feu inordinatâ," from equality in perturbate, or diforderly proportion. This term is ufed when the firt magnitude is to the fecond of the firft rank as the laft but one is to the laft of the fecond rank; and as the fecond is to the third of the firft rank, fo is the laft but two to the laft but one of the fecond rank; and as the third is to the fourth of the firft rank, fo is the third from the laft to the laft but two of the fecond rank ; and fo on in a crofs order: and the inference is in the 18 th definition. It is demonftrated in B. 5. pr. 23.

Thus, if there be two ranks of magnitudes, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, the firt rank, and L, M, N, O, P, Q, the fecond, fuch that $A: B:: P: Q, B: C:: O: P$. C:D::N:O,D:E:: M:N, E:F::L: I;
the term "ex æquali in proportione perturbatâ feu inordinatâ" infers that

$$
\mathrm{A}: \mathrm{F}:: 1: Q .
$$ F there be three magnitudes，and other three，which， taken two and two，have the fame ratio；then，if the firft be greater than the third，the fourth fball be greater than the fixth；and if equal，equal； and if lefs，lefs．

Let $\checkmark, \square, \square$ ，be the firft three magnitudes， and $>, \bigcirc, \bigcirc$ ，be the other three， fuch that $\nabla: \square:: \bigcirc: \bigcirc$ ，and $\square: \square:: \bigcirc: \bigcirc$ ．

Then，if \square ，二，or $\exists \square$ ，then will \downarrow ，$二$ ，

$$
\text { or } \sqsupset \bigcirc
$$

From the hypothefis，by alternando，we have

$$
\begin{gathered}
\nabla: \odot:: \circlearrowleft: \bigcirc \\
\text { and } \nabla: \bigcirc:: \square: \bigcirc ;
\end{gathered}
$$

$$
\therefore \vee:>:: \square(\text { B. } 5 \cdot \text { pr. II })
$$

\therefore if \square ，二，or $\square \square$ ，then will $\vee \square$ ，$=$ ，

$$
\text { or } \square \bigcirc(\text { B. } 5 \cdot \mathrm{pr} \cdot \mathrm{I} 4)
$$

\therefore If there be three magnitudes，\＆c． crofs order；then if the firft magnitude be greater than the third，the fourth Jhall be greater than the faxth；and if equal，equal；and if lefs，lefs．

Let $\sqrt{\square}$ ，be the firft three magnitudes， and \uparrow, \bigcirc, ，the other three，

Then，if ᄃ，＝，or $\sqsupset \square$ ，then will ᄃ，二，コ

Firft，let be $\square \square$
then，becaufe is any other magnitude，

$$
\begin{aligned}
& \text { 『: ㄷㅁ (B. 5. pr. 8); } \\
& \text { but } \bigcirc: ~: ~: ~(h y p .) \text {; } \\
& \therefore 0: \text { ㄷ (B. 5. pr. 13) ; } \\
& \text { and becaufe : } \\
& \therefore \text { 目: }: 0:- \text { (inv.), }
\end{aligned}
$$

and it was fhown that \bigcirc ：\subset 国

$$
\therefore \bigcirc: \subset \subset \bigcirc \text { (B. 5. pr. 13) ; }
$$

Secondly，let $=\square$ ；then fhall $\downarrow=0$ ．

Next，let be コロ，then fhall be コ for ㄷ
and it has been fhown that

：
－

\therefore by the firft cafe is $\sqsubset \star$ ， that is，\sqsupset 。
\therefore If there be three，\＆c． F there be any number of magnitudes, and as many others, which, taken two and two in order, have the fame ratio; the firft Juall have to the laft of the firft magnitudes the fame ratio which the firfl of the others has to the laft of the fame.
N.B.-This is ufually cited by the words "ex requali," or "ex aquo."

Firft, let there be magnitudes

fuch that

Let there magnitudes, as well as any equimultiples whatever of the antecedents and confequents of the ratios, ftand as follows:-

$$
\begin{aligned}
& \nabla,>, \square,>, 0, \\
& \text { and } \\
& \mathrm{M} \nabla, m \diamond, \mathrm{~N} \square, \mathrm{M} \diamond, m \bigcirc, \mathrm{~N} \bigcirc \text {, } \\
& \text { becaufe } \square: \rightarrow \text { : } \bigcirc \text {; } \\
& \therefore M \oslash: m \diamond:: M \oslash: m \bigcirc \text { (B. 5. p. 4). }
\end{aligned}
$$

For the fame reafon
m : $\mathrm{N} \quad: \mathrm{:m} \bigcirc: \mathrm{N} \bigcirc$;
and becaufe there are three magnitudes, C C

and other three, M$\rangle, m \bigcirc, \mathrm{~N} \bigcirc$, which, taken two and two, have the fame ratio ;

$$
\therefore \text { if } \mathrm{M} \sqsubset,=\text {, or } \sqsupset \mathrm{N}
$$

then will $\mathrm{M} \vee \sqsubset$, , or $\sqsupset \mathrm{N}$, by (B. 5. pr. 20);

$$
\text { and } \therefore \square: \square: \bigcirc \text { (def. 5). }
$$

Next, let there be four magnitudes,
 - , 凮, and other four, $\bigcirc, \bigcirc, \square, \Delta$, which, taken two and two, have the fame ratio, that is to fay, $\quad>: 0: \bigcirc$,
 then hall \quad, $\bigcirc: \Delta$;
for, because \quad, are three magnitudes, and $\bigcirc, \bigcirc,=$, other three,
which, taken two and two, have the fame ratio; therefore, by the foregoing cafe, $\quad \square:: \bigcirc: \square$,

$$
\text { but } \quad \square:: \Delta ;
$$

therefore again, by the firft cafe, \square : - ; and fo on, whatever the number of magnitudes be.

\therefore If there be any number, \&c.

 F there be any number of magnitudes, and as many others, which, taken two and two in a crofs order, have the fame ratio; the firft flall have to the laft of the firft magnitudes the fame ratio which the firft of the others has to the laft of the fame.N.B.-This is ufually cited by the words "ex equali in proportione perturbatâ" or "ex equo perturbato."

Firft, let there be three magnitudes, $\square, \square, \square$, and other three, $>, \bigcirc, \infty$, which, taken two and two in a crofs order, have the fame ratio ;

Let thefe magnitudes and their refpective equimultiples be arranged as follows:-

and for the fame reafon

but $\square: \square:: \bigcirc: \bigcirc$ (hyp.),

196 BOOK V. PROP. XXIII. THEOR.

$$
\begin{aligned}
& \therefore M \square: M \square:: \bigcirc: \bigcirc \text { (B. } 5 \cdot \text { pr. 11) } ; \\
& \text { and becaufe } \square: \square::\rangle: \bigcirc \text { (hyp.), } \\
& \therefore M \square: m \quad: \quad \therefore \quad m \bigcirc \text { (B. 5. pr. 4); }
\end{aligned}
$$ then, becaufe there are three magnitudes,

$$
\mathrm{M} \square, \mathrm{M} \square, m \square
$$

and other three, M, m $\bigcirc, m \bigcirc$, which, taken two and two in a crofs order, have the fame ratio ;

$$
\begin{aligned}
& \text { therefore, if } M \subset \square,=\text {, or } \exists m \text {, } \\
& \text { then will } M \triangle \square,=\text { or } \square m \bigcirc \text { (B. } 5 \cdot \text { pr. 21), } \\
& \text { and } \therefore \square: \square: \text { (B. } 5 \cdot \text { def. } 5 \text {). }
\end{aligned}
$$

Next, let there be four magnitudes,

and other four,

which, when taken two and two in a crofs order, have the fame ratio; namely,

For, becaufe \square, \square are three magnitudes,

BOOK V. PROP. XXIII. THEOR. 197 and, $\boldsymbol{\Delta}$, other three,
which, taken two and two in a crofs order, have the fame ratio,
therefore, by the firt cafe, : : :

therefore again, by the firft cale, $: \therefore \bigcirc: \Delta$;
and fo on, whatever be the number of fuch magnitudes.
\therefore If there be any number, \&ic. F the firft has to the fecond the fame ratio which the third has to the fourth, and the fifth to the fecond the fame which the fixth has to the fourth, the firfl and fifth together Jball have to the fecond the fame ratio which the third and fixth together have to the fourth.

and, becaufe thefe magnitudes are proportionals, they are proportionals when taken jointly,
$\therefore+\Delta: \Delta:$

(B. 5. pr. 18),
but $\bigcirc: \bigcirc:: \bigcirc: \bigcirc$ (hyp.),
$\therefore \square+\bigcirc: \square:: 0+\square:$ (B. $5 \cdot \mathrm{pr} .22$).
\therefore If the firft, \&c.

F four magnitudes of the fame kind are proportionals, the greateft and leaft of them together are greater than the other two together.

Let four magnitudes, $\sigma+\square, \square+\diamond, \square$, and \rangle,
of the fame kind, be proportionals, that is to fay,

$$
+\square: \square+\triangleleft:: \square:
$$

and let $\square+\square$ be the greateft of the four, and confequently by pr. A and 14 of Book $5, \Delta$ is the leaft; then will $\square+\square+\rightarrow$ be $\square \square+\bigcirc+\square$; becaufe $\square+\square: \square+\diamond:: \square: \stackrel{\text {, }}{ }$

$$
\begin{gathered}
\therefore \nabla: \square::+\square: \square+\text { (B. 5. pr. 19), } \\
\text { but } \quad+\square \square \square+\text { (hyp.), }
\end{gathered}
$$

$$
\therefore \text { ᄃ (B. } 5 . \operatorname{pr} . \mathrm{A}) \text {; }
$$

$$
\text { to each of thefe add } \square+\diamond
$$

$$
\therefore \square+\square+\triangleleft \text { ᄃ } \square \square+\diamond
$$

\therefore If four magnitudes, \&cc.

DEFINITION X.

When three magnitudes are proportionals, the firft is faid to have to the third the duplicate ratio of that which it has to the fecond.

For example, if A, B, C, be continued proportionals, that is, $A: B: B: C, A$ is faid to have to C the duplicate ratio of $A: B$;

$$
\text { or } \frac{A}{C}=\text { the fquare of }-
$$

This property will be more readily feen of the quantities

$$
\begin{aligned}
& a r^{2}, \quad, a \text { for } a r^{2}::: a: a \\
& \text { and } \frac{a r^{2}}{a}= r^{2}=\text { the fquare of } \frac{a r^{2}}{a r}=r, \\
& \text { or of } a, r, a r^{2} ; \\
& \text { for } \frac{a}{a r}= \frac{1}{r^{2}}=\text { the fquare of } \frac{a}{2 r}=\frac{1}{r} .
\end{aligned}
$$

DEFINITION XI.

When four magnitudes are continual proportionals, the firt is faid to have to the fourth the triplicate ratio of that which it has to the fecond; and fo on, quadruplicate, \&c. increafing the denomination fill by unity, in any number of proportionals.

For example, let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, be four continued proportionals, that is, $A: B:: B: C:: C: D ; A$ is faid to have to D, the triplicate ratio of A to B;

$$
\text { or } \frac{A}{D}=\text { the cube of } \frac{A}{B} \text {. }
$$

This definition will be better underftood, and applied to a greater number of magnitudes than four that are continued proportionals, as follows:-

Let $a r^{3}, a r^{8}, a r, a$, be four magnitudes in continued proportion, that is, $a r^{3}: a r^{2}:: a 7^{\circ}: a r: a r: a$, then $\frac{a r^{3}}{a}=r^{3}=$ the cube of $\frac{a r^{3}}{a r^{3}}=r$.
Or, let $a r^{5}, a r^{4}, a r^{3}, a r^{2}, a r, a$, be fix magnitudes in proportion, that is
$a r^{5}: a r^{4}:: a r^{4} \cdot a r^{3}:: a r^{3}: a r^{2}:: a r^{2}: a r:: a r: a$, then the ratio $\frac{a r^{5}}{a}=r^{5}=$ the fifth power of $\frac{a r^{5}}{a r^{4}}=r$.

Or, let $a, a r, a r^{2}, a r^{3}, a r^{4}$, be five magnitudes in continued proportion; then $\frac{a}{a r^{4}}=\frac{1}{r^{4}}=$ the fourth power of $\frac{a}{a r}=\frac{1}{r}$.

DEFINITION A.

To know a compound ratio :-
When there are any number of magnitudes of the fame kind, the firft is faid to have to the laft of them the ratio compounded of the ratio which the firft has to the fecond, and of the ratio which the fecond has to the third, and of the ratio which the third has to the fourth; and fo on, unto the laft magnitude.

For example, if $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, be four magnitudes of the fame kind, the firft A is faid to have to the laft D the ratio compounded of the ratio of A to B, and of the
 ratio of B to C, and of the ratio of C to D; or, the ratio of
A to D is faid to be compounded of the ratios of A to B, B to C, and C to D.

And if A has to B the fame ratio which E has to F, and B to (' the fame ratio that G has to H, and (to D) the fame that K has to L; then by this definition, A is said to have to D the ratio compounded of ratios which are the fame with the ratios of E to F, G to H , and K to L . And the fame thing is to be underftood when it is more briefly expreffed by faying, A has to D the ratio compounded of the ratios of E to F, G to H, and K to 1 .

In like manner, the fame things being fuppofed; if M has to V the fame ratio which A has to D, then for fhortnefs fake, M is faid to have to N the ratio compounded of the ratios of E to F, G to H, and K to L.

This definition may be better underftood from an arithmetical or algebraical illuftration; for, in fact, a ratio compounded of feveral other ratios, is nothing more than a ratio which has for its antecedent the continued product of all the antecedents of the ratios compounded, and for its confequent the continued product of all the confequents of the ratios compounded.

Thus, the ratio compounded of the ratios of

$$
=: 3,4:-6: 11,2: 5
$$

is the ratio of $=\times 1 \times 6 \times 2: 3 \times 7 \times 11 \times 5$,
or the ratio of $96:$ I 55 , or $32: 385$.
And of the magnitudes A, B, C, D, E, F, of the fame kind, $A: F$ is the ratio compounded of the ratios of

$$
\begin{gathered}
A: B, B: C, C: D, D: E, E: F ; \\
\text { for } A \times B \times C \times D \times E: B \times C \times D \times E \times F, \\
\text { or } \frac{A \times B \times C \times D \times E}{X C \times D \times E \times F}=\frac{A}{F}, \text { or the ratio of } A: F
\end{gathered}
$$

ATIOS which are compounded of the fame ratios are the fame to one another.

```
Let A:B:: F:G,
    B:C::G:H,
    C:D::H:K,
and D:E::K:L.
```

```
A BCDE
F G H K L
```

Then the ratio which is compounded of the ratios of $A: B, B: C, C: D, D: E$, or the ratio of $A: E$, is the fame as the ratio compounded of the ratios of $F: G$, $G: H, H: R, K: L$, or the ratio of $F: L$.

$$
\begin{aligned}
\text { For } \frac{A}{B} & =\frac{F}{G}, \\
\frac{B}{C} & =\frac{G}{H}, \\
\frac{C}{D} & =\frac{H}{K}, \\
\text { and } \frac{D}{E} & =\frac{K}{L} ; \\
\therefore \frac{A \times B \times C \times D}{B \times C \times D \times E} & =\frac{F \times G \times H \times K}{G \times H \times K \times L}, \\
\text { and } \therefore \frac{A}{E} & =\frac{F}{L},
\end{aligned}
$$

or the ratio of $A: E$ is the fame as the ratio of $E: L$.
The fame may be demonftrated of any number of ratios fo circumftanced.

$$
\begin{aligned}
& \text { Next, let } A: B:: K: L, \\
& B: C:: H: K \\
& C: D:: G: H \\
& D: E:: F: G
\end{aligned}
$$

Then the ratio which is compounded of the ratios of $A: B, B:(,(: D, \Gamma): E$, or the ratio of $A: E$, is the fame as the ratio compounded of the ratios of $: L, I f: \mid$, $C, \mathrm{H}, \mathrm{F}: \mathrm{C}$, or the ratio of $\mathrm{F}: \mathrm{L}$.

$$
\begin{aligned}
\text { For } \frac{A}{B} & =\frac{h}{L}, \\
\frac{B}{C} & =\frac{H}{B}, \\
\frac{C}{D} & =\frac{\Gamma}{F}, \\
\text { and } \frac{D}{E} & =\frac{F}{G} ; \\
\therefore \frac{A \times B \times C \times D}{B \times C} \times D \times E & =\frac{A \times 11 \times G \times F}{L \times N \times H \times G}, \\
\text { and } \therefore \frac{A}{E} & =\frac{F}{L},
\end{aligned}
$$

or the ratio of $A: E$ is the fame as the ratio of $F: L$.
\therefore Ratios which are compounded, \&c. F a ratio which is compounded of feveral ratios be the fame to a ratio which is compounded of feveral other ratios; and if one of the firft ratios, or the ratio which is compounded of feveral of them, be the fame to one of the laft ratios, or to the ratio which is compounded of leveral of them; then the remaining ratio of the firft, or, if there be more thum one, the ratio compounded of the remaining ratios, fhall be the fame to the remaining ratio of the laft, or, if there be more than one, to the ratio compounded of thefe remuining ratios.

$$
\begin{aligned}
& A B C D E F G H \\
& P Q R S T X
\end{aligned}
$$

Let $A: B, B: C, C: D, D: E, E: F, F: G, G: H$, be the firft ratios, and $P: Q, Q: R, R: S, S: T, T: X$, the other ratios; alfo, let $\mathrm{A}: \mathrm{H}$, which is compounded of the firlt ratios, be the fame as the ratio of $P: X$, which is the ratio compounded of the other ratios; and, let the ratio of $A: E$, which is compounded of the ratios of $A: B$, $B: C, C: D, D: E$, be the fame as the ratio of $P: R$, which is compounded of the ratios $P: Q_{2} Q: R$.

Then the ratio which is compounded of the remaining firft ratios, that is, the ratio compounded of the ratios $E: F, F: G, G: H$, that is, the ratio of $E: H$, fhall be the fame as the ratio of $R: X$, which is compounded of the ratios of $R: S, S: T, T: X$, the remaining other ratios.

Becaufe $\frac{1 \times B \times C \times D \times E \times F \times G}{B \times C \times D \times E \times F \times G \times H}=\frac{P \times Q \times R \times S \times T}{Q \times R \times \times 1 \times X}$,

$$
\begin{gathered}
\text { or } \frac{A \times B \times C \times D}{B \times C \times D \times E} \times \frac{E \times F \times G}{F \times G \times H}=\frac{P \times Q}{Q \times R} \times \frac{R \times S \times 1}{\times I \times}, \\
\text { and } \frac{A \times B \times C \times D}{B \times C \times D \times E}=\frac{P \times Q}{Q \times R}, \\
\therefore \frac{E \times F \times G}{F \times G \times H}=\frac{R \times C \times 1}{\times I \times X}, \\
\therefore \frac{E}{H}=\frac{R}{X}, \\
\therefore E: H=R: I .
\end{gathered}
$$

\therefore If a ratio which, \&c. F there be any number of ratios, and any number of other ratios, fuch that the ratio which is compounded of ratios, which are the fame to the firft ratios, each to each, is the fame to the ratio which is compounded of ratios, which are the fame, each to each, to the laft ratios-and if one of the firft ratios, or the ratio which is compounded of ratios, which are the fame to Several of the firgt ratios, each to each, be the fame to one of the laft ratios, or to the ratio which is compounded of ratios, which are the fame, each to each, to feveral of the laft ratios-then the remaining ratio of the firft; or, if there be more than one, the ratio which is compounded of ratios, which are the fame, each to each, to the remaining ratios of the firft, Jall be the fame to the remaining ratio of the laft; or, if there be more than one, to the ratio which is compounded of ratios, which are the fame, each to each, to thefe remaining ratios.

Let $A: B, C: D, E: F, G: H, K: L, M: N$, be the firft ratios, and 1) $: 1,12: R, S: T, V: W, X: Y$, the other ratios;

$$
\text { and let } \begin{array}{r}
\mathrm{A}: \mathrm{B}=:: b, \\
\mathrm{C}: \mathrm{D}=b: c, \\
\mathrm{E}: \mathrm{F}=:: d, \\
\mathrm{G}: \mathrm{H}=d: \\
\mathrm{K}: \mathrm{L}=a: t, \\
\mathrm{M}: \mathrm{N}=t: g .
\end{array}
$$

Then, by the definition of a compound ratio, the ratio of $a: g$ is compounded of the ratios of $a: b, b: c, c: d, d: e$, : :f. $f^{\circ}{ }^{\circ}$, which are the fame as the ratio of $\mathrm{A}: \mathrm{B}, \mathrm{C}: \mathrm{D}$, $E: F, G: H, K: L, M: N$, each to each.

$$
\begin{aligned}
\text { Alfo, } & =h: k \\
R: R & =k: l, \\
\mathrm{~S}: \mathrm{T} & =l: m, \\
\mathrm{~V}: \mathrm{W} & =m: n, \\
\mathrm{X}: \mathrm{Y} & =n: p
\end{aligned}
$$

Then will the ratio of $k: p$ be the ratio compounded of the ratios of $h: k, k: l, l: m, m: n, n: p$, which are the fame as the ratios of $\mathrm{O}: \mathrm{P}, \mathrm{Q}: \mathrm{R}, \mathrm{S}: \mathrm{T}, \mathrm{V}: \mathrm{W}, \mathrm{X}: \mathrm{Y}$, each to each.
\therefore by the hypothefis ${ }_{a}: g=h: p$.
Alfo, let the ratio which is compounded of the ratios of $A: B, C: D$, two of the firft ratios (or the ratios of $a: c$, for $\mathrm{A}: \mathrm{B}={ }_{a}: b$, and $\mathrm{C}: \mathrm{D}={ }_{b}: c$, be the fame as the ratio of $a: d$, which is compounded of the ratios of $a: b$, $b: c, c: d$, which are the fame as the ratios of $0: P$, $Q: R, S: T$, three of the other ratios.

And let the ratios of $h: s$, which is compounded of the ratios of $h: k, k: m, m: n, n: s$, which are the fame as the remaining firft ratios, namely, $\mathrm{E}: \mathrm{F}, \mathrm{G}: \mathrm{H}, \mathrm{K}: \mathrm{L}$, $\mathrm{M}: \mathrm{N}$; alfo, let the ratio of e:g, be that which is compounded of the ratios $e: f, f: g$, which are the fame, each to each, to the remaining other ratios, namely, $\mathrm{Y}: \mathrm{W}$, $\mathrm{X}: \mathrm{Y}$. Then the ratio of $\mathrm{h}: \mathrm{s}$ fhall be the fame as the ratio of $\mathrm{e}: \mathrm{g}$; or $\mathrm{h}: \mathrm{s}=\mathrm{e}: \mathrm{g}$.

$$
\text { For } \frac{A \times c \times E \times G \times R \times M}{B \times D \times F \times H \times L \times N}=\frac{a \times b \times c \times d \times e \times f}{b \times c \times a \times e \times f \times g},
$$

by the compofition of the ratios;

$$
\begin{aligned}
& \therefore \frac{a \times b \times c \times d \times{ }_{c} \times f}{b \times c \times d \times e \times f \times \varepsilon}=\frac{n \times k \times l \times m \times n}{k \times l \times m \times n \times p} \text { (hyp.), } \\
& \text { or } \frac{a \times b}{b \times c} \times \frac{c \times d \times e \times_{f}}{d \times e \times f \times g}=\frac{h \times k \times l}{k \times l \times m} \times \frac{m \times n}{n \times p}, \\
& \text { but } \frac{a \times b}{b \times b}=\frac{A \times c}{B \times D}=\frac{0 \times 2 \times s}{P \times R \times T}=\frac{a \times b \times c}{b \times c \times d}=\frac{h \times k \times l}{k \times l \times m} \text {; } \\
& \therefore \frac{c \times d \times e \times j}{i \times e \times f \times \underset{y}{c}}=\frac{m \times n}{n \times p} \text {. } \\
& \text { And } \frac{\varepsilon \times c \times \varepsilon \times}{d \times e \times f \times z}=\frac{h \times k \times m \times n}{k \times m \times n \times s} \text { (hyp.), } \\
& \text { and } \frac{m \times n}{n \times p}=\frac{\mathrm{e} \times \mathrm{f}}{\mathrm{f} \times \mathrm{g}} \text { (hyp.), } \\
& \therefore \frac{h \times k \times m \times n}{k \times m \times n \times s}=\frac{e f}{f g}, \\
& \therefore \frac{h}{s}=\frac{e}{g}, \\
& \therefore h: s=e: g \text {. }
\end{aligned}
$$

\therefore If there be any number, \&c.

[^0]
BOOK VI.

DEFINITIONS.

ECTILINEAR figures are faid to be fimilar, when they have their feveral angles equal, each to each, and the fides about the equal angles proportional.

II.

Two fides of one figure are faid to be reciprocally proportional to two fides of another figure when one of the fides of the firft is to the fecond, as the remaining fide of the fecond is to the remaining fide of the firft.

III.

A straight line is faid to be cut in extreme and mean ratio, when the whole is to the greater fegment, as the greater fegment is to the lefs.
IV.

The altitude of any figure is the straight line drawn from its vertex perpendicular to its bafe, or the bafe produced.

Produce both ways, take fucceffively on - produced lines equal to it; and on produced lines succeffively equal to it; and draw lines from the common vertex to their extremities.

The triangles

thus formed are all equal to one another, fince their bafes are equal. (B. 1. pr. 38.)

and its bafe are refpectively equi-

and the bafe

In like manner
 and its bafe are refpectively equimultiples of \quad and the bafe .
\therefore If m or 6 times $\sqsubset=$ or $\sqsupset n$ or 5 times then m or 6 times - ᄃ $=$ or $コ n$ or 5 times , m and n ftand for every multiple taken as in the fifth definition of the Fifth Book. Although we have only fhown that this property exifts when m equal 6 , and n equal 5 , yet it is evident that the property holds good for every multiple value that may be given to m, and to n.

Parallelograms having the fame altitude are the doubles of the triangles, on their bafes, and are proportional to them (Part I), and hence their doubles, the parallelograms, are as their bafes. (B. 5. pr. 15.)

> Q.E.D.

Fa straight line
be drawn parallel to any side cono.e.o.en of a sriangle, it flail cut the otherfides, or tho fe fides produced, into proportional Segments.

> And if any flraight line divide the fides of a triangle, or thole fides produced, into proportional legments, it is parallel to the remaining file .-.............

PART I.

$$
\text { Draw } \simeq \text { and }
$$

PART II.

Let the fame construction remain,

but they are on the fame bale anonnore, and at the fame fide of it, and
$\therefore \longrightarrow$ ||
(B. 1. pr. 39).
Q. E. D.

PARTI.

(B. $5 \cdot \mathrm{pr} .7$).

PART II.
Let the fame conftruttion remain,
and \qquad

(B. 6. pr. 2) ;
 (hyp.)
\therefore
(B. $5 \cdot \mathrm{pr}$. 11).

$$
\begin{aligned}
& \text { and } \therefore \text { (B. } 5 . \text { pr. 9), } \\
& \text { and } \therefore=\sqrt{\therefore} \text { (B. . . pr. 5); but fince }
\end{aligned}
$$ - || -......e=: $D=\sqrt{ }=$ and $\angle=$ (B. 1. pr. 29) ; $\therefore \angle=\nabla$, and $=D$, and \therefore bifects Δ

Q.E. D.

about the equal angles are proportional, and the fides which are oppofite to the equal angles are homologous.

Let the equiangular triangles be fo placed that two fides $\longrightarrow,=-=-\infty$ - oppofite to equal angles and

\checkmarkmay be conterminous, and in the fame ftraight line; and that the triangles lying at the fame fide of that ftraight line, may have the equal angles not conterminous,
i. e.
 oppofite to
 10 Draw wouromes and Then, becaufe
$=\|$ (B.1.pr.28); and for a like reafon, || $=\cdots e n_{n}$,
 is a parallelogram.

But : - - =enerne: :

(B. 6. pr. 2) ;
and fince $=$ (B. I. pr. 34),
alternation,

-n...enen.. ; and by

(B. $5 \cdot \mathrm{pr} \cdot{ }^{16}$).

In like manner it may be fhown, that

and by alternation, that
but it has been already proved that

and therefore, ex æquali,

(B. $5 \cdot \mathrm{pr} .22$),
therefore the fides about the equal angles are proportional, and thofe which are oppofite to the equal angles are homologous.

> Q.E.D.

two triangles have their fides proportional (•-ッ-=-a-e :

$::$) they are equiangular, and the equal angles are fubtended by the homolosous fides.

From the extremities of , draw

and consequently
 (B. 1. pr. 32), and fince the triangles are equiangular,

(B. 6. pr. 4) ;

In the like manner it may be flown that

Therefore, the two triangles having a common bafe ——, and their fides equal, have alfo equal angles oppofite to equal fides, i. e.

and therefore the triangles are equiangular, and it is evident that the homologous fides fubtend the equal angles. Q. E. D.

angle () of the one, equal to one angle () of the other, and the fides about the equal angles proportional, the triangles Shall be equiangular, and have thole angles equal which the homologous fides fubtend.

From the extremities of , one of the fides

(B. 1. pr. 32), and two triangles being equiangular,

(B. 6. pr. 4) ;
but : -........... : :

(B. $5 \cdot$ pr. II),
and confequently
$=$ (B. 5. pr. 9) ;
 their equal angles oppofite to homologous fides.
Q. E. D.
 right angle, the triangles are equiangular, and thofe angles are equal about wibich the fides are proportional.

Firft let it be affumed that the angles
 are each lefs than a right angle: then if it be fuppofed that and contained by the proportional fides, are not equal, let Δ be the greater, and make $\Delta=\Delta$.

$$
\therefore \Delta=\left\langle\text { (B. 1. pr. } 3^{2}\right) \text {; }
$$

$$
\text { but } \xlongequal{\text { (B. 6. pr. 4), }}
$$

But is left than a right angle (hyp.)
$\therefore \quad$ is lefs than a right angle ; and \therefore muff be greater than a right angle (B. I. pr. I 3), but it has been proved $=4$ and therefore lefs than a right angle, which is absurd. $\therefore \Delta$ and are not unequal; \therefore they are equal, and fince $=\Lambda$ (hyp.) $\therefore=\left(\right.$ B. ı. pr. 3^{2}), and therefore the triangles are equiangular.
 than a right angle, it may be proved as before, that the triangles are equiangular, and have the fides about the equal angles proportional. (B. 6. pr. 4).
Q. E. D.

a perpendicular (—) be drawn from the right angle to the oppofite fide, the triangles
 triangle and to each other.

common to

$$
\Delta=\left(\text { B. . } \cdot \mathrm{pr} \cdot 3^{2}\right)
$$

\therefore
and
are equiangular; and confequently have their fides about the equal angles proportional (B. 6. pr. 4), and are therefore fimilar (B. 6. def. 1).

In like manner it may be proved that is fimilar to

has been flewn to be fimilar
 and are fimilar to the whole and to each other.
Q.E.D.

ROM a given fraight line ($-==\infty$) to cut off any required part.

From either extremity of the
draw given line draw making any angle with —oneon ; and produce till the whole produced line annurn contains as often as —newerme contains the required part.

Draw , and draw

is the required part of
For fince

 !

O divide a fraight line (———) fimilarly to a given divided line

From either extremity of the given line

making any angle ; take
co.........., -w-o....... and -800800*uer equal to

Q.E.D.

O find a third proportional to two given fraight lines $(\longrightarrow$ and ——.

At either extremity of the given line draw
making an angle; take

draw \longrightarrow
make

and draw

(B. I. pr. 3I.)
is the third proportional

For fince \square
\square

(B. 6 pr. 2) ;
but menneno.= $=$..........en: $=\square$ (conft.);

$$
\therefore=\frac{}{(\text { B. } 5 \cdot \mathrm{pr} .7) .}:
$$

Q.E.D.

O find a fourth proportional to three given lines

Draw
and \longrightarrow making any angle;

draw \longrightarrow,

(B. 1. pr. 31);
is the fourth proportional.

On account of the parallels,

(B. $5 \cdot \mathrm{pr} .7$).
Q.E.D.

O find a mean proportional between two given ftraight lines
 make \qquad
 and $=$-otos......e; bifect
and from the point of bifection as a centre, and half the
line as a radius, defcribe a femicircle

$$
\text { draw } \perp \longrightarrow \text { : }
$$

— is the mean proportional required.
Draw
\qquad and =0......e=.

Since
 is a right angle (B. 3. pr. 3 I), and is \perp from it upon the oppofite fine,
\therefore is a mean proportional between
and
(B. 6. pr. 8),
and \therefore between menen-m and menemene (cont.).

232 BOOKVI. PROP. XIV. THEOR.

I.

which have one angle in each equal, have the fides about the equal angles reciprocally proportional

II.

And parallelograms which have one angle in each equal, and the fides about them reciprocally proportional, are equal.

and may be continued right lines. It is evident that they may affume this pofition. (B. 1. prs. 13, 14, I 5.)

Complete

Since

The fame conftruction remaining :

I.

QUAL triangles, which have one angle in each equal $(>)$, have the fides about the equal angles reciprocally proportional

II.

And two triangles which have an angle of the one equal to an angle of the other, and the fides about the equal angles rectprocally proportional, are equal.
I.

Let the triangles be fo placed that the equal angles \square and may be vertically oppofite, that is to fay, fo that and may be in the fame ftraight line. Whence alfo and muft be in the fame ftraight line. (B. 1. pr. 14.)

(B. 5. pr. 1I.)
II.

Let the fame conftruction remain, and

Q. E. D.

PART I.

F four Araight lines be proportional
 the rectangle (by the extremes, is equal to the rettangle (— X $-\infty=-\infty=-$) contained by the means.

PART II.
And if the reEtangle contained by the extremes be equal to the rectangle contained by the means, the four ftraight lines are proportional.

PART I.
From the extremities of and draw \longrightarrow and \perp to them and $=\ldots$. and nonnomen refpectively: complete the parallelograms

And fince,

that is, the rectangle contained by the extremes, equal to the rectangle contained by the means.

PART II.
Let the fame conftruction remain; becaufe

(B. 6. pr. 14).

(B. 5. pr. 7).

> Q. E. D.

PART I

F three firaight lines be proportional (——:
$:: \quad$ — the rectangle under the extremes is equal to the fquare of the mean.

PART II.
And if the rectangle under the extremes be equal to the fquare of the mean, the three fraight lines are proportional.

PART I.

or $=\sim^{2}$; therefore, if the three ftraight lines are proportional, the rectangle contained by the extremes is equal to the fquare of the mean.

PART II.

(B. 6. pr. i6), and

Q. E. D.

N a given ftraight line (\longrightarrow) to conglruct a rectilinear figure fimilar to a given one (and fimilarly placed.

Refolve the given figure into triangles by drawing the lines -------- and =omeno..

At the extremities of make $=\Delta$ and $D=\square$:

again at the extremities of \longrightarrow make $<\square$

$$
D=V=
$$

Then
 is fimilar to It is evident from the conftruction and (B. 1. pr. 32) that the figures are equiangular; and fince the triangles and are equiangular; then by (B.6.pr.4),
and \qquad : — :

Again, becaufe and are equiangular,

\therefore ex æquali,

(B. 6. pr. 22.)

In like manner it may be fhown that the remaining fides of the two figures are proportional.
\therefore by (B. 6. def. 1.)
is fimilar to
and fimilarly fituated; and on the given line
Q.E.D.

are to one another in the duplicate ratio of their homologous fides.
 and

,be equal angles, and and homologous fides of the fimilar triangles

(B. 6. pr. 4) ;

(B. $5 \cdot$ pr. 16 , alt.),

(B. 5 pr. 7);
but

(B. 6. pr. 1),

that is to fay, the triangles are to one another in the duplicate ratio of their homologous fides

$$
\text { and } \cdots \text { (B. } 5 . \text { def. } 11 \text {). }
$$

Q.E.D.

BOOK VI. PROP. XX. THEOR. 243

IMILAR polygowns may be divided into the fame number of fimilar triangles, each fimilar pair of which are proportional to the polygons; and the polygons are to each other in the duplicate ratio of their homologous fides.

Draw
 and

e*ucroere, and
and --..-...---, refolving the polygons into triangles. Then because the polygons
and
 \qquad

\therefore

are fimilar, and
 (B. 6. pr. 6) ;
but because they are angles of fimilar polygons; therefore the remainders
 and
 are equal ; hence

\qquad
on account of the fimilar triangles,

```
and me.e-m= : 
```


ex æquali (B. 5. pr. 22), and as thefe proportional fides contain equal angles, the triangles
 and are fimilar (B. 6. pr. 6).

In like manner it may be fhown that the

triangles

 and
 are fimilar.

in like manner, in the duplicate

(B. $5 \cdot \mathrm{pr} .11$);
 in the duplicate ratio of
the duplicate ratio of to

and as one of the antecedents is to one of the confequents, fo is the fum of all the antecedents to the fum of all the confequents ; that is to fay, the fimilar triangles have to one another the fame ratio as the polygons (B. 5. pr. 12).

Q. E. D

which are fimilar to the fame figure (
 are fimilar alfo to each other.

Since

and
 lar, they are equiangular, and have the fides about the equal angles proportional (B. 6. def. 1) ; and fince the figures
 are equiangular, and have the fides about the equal angles
proportional ; therefore
 equiangular, and have the fides about the equal angles proportional (B. 5. pr. II), and are therefore fimilar.
Q.E. D.

PART I.

 F four feraight lines be proportional (——— $::$ - $:$), the finilar rectilinear figures fimilarly described on them are alfo proportional.

PART II.

And if four fimilar rectilinear figures, fimilarly defcribed on four fraight lines, be proportional, the
 fraight lines are alfo proportional.

PART I.

Take -........-- a third proportional to

\therefore ex æquali,

but

(B. 6. pr. 20),

248 BOOK VI. PROP. XXII. THEOR.

(B. 5. pr. 11).

PART II.
Let the fame conftruction remain :

(B. 5. pr. 11).
Q.E. D.

QUIANGULAR parallel-
ograms (and) are to one another in a ratio compounded of the ratios of their Jides.

Let two of the fides andous. about the equal angles be placed fo that they may form one ftraight line.

$$
\begin{aligned}
& \text { Since } \square+\square=\square \text {, } \\
& \text { and } D=\square \text { (hyp.), } \\
& D+D=\square \text {, } \\
& \text { and } \therefore \text { and form one ftraight line } \\
& \text { (B. г. pr. 14) ; } \\
& \text { Since } \\
& \text { - Exoy inme } \\
& \text { (B. 6. pr. 1), }
\end{aligned}
$$

has to a ratio compounded of the ratios of to meseos, and of to
Q. E. D.

N any parallelogram (H) the parallelograms $(\square$ and \square) which are about the diagonal are fimilar to the whole, and to each other.

As
 have a

 common angle they are equiangular;but because

and
 are fimilar (B. 6. pr. 4),
\therefore

and the remaining oppofite fides are equal to thole,

\thereforeand
 have the fides about the equal angles proportional, and are therefore fimilar.

In the fame manner it can be demonstrated that the parallelograms
 and

\squareare fimilar.

Since, therefore, each of the parallelograms

\square
is fimilar to
 , they are fimilar to each other.
Q. E. D.

O defcribe a rectilinear figure, which fall be fimilar to a given rectilinear figure (), and equal to another ().

and having

(B. I. pr. 45), and then and $=-=\ldots=-=$ will lie in the fame ftraight line (B. 1. prs. 29, 14),

Between and \boldsymbol{m}.......... find a mean proportional

Then

For fence
 are fimilar, and

(B. 6. pr. 20);

Q. E. D. pofited parallelograms

and

have a common angle, they are about the fame diagonal.

$\therefore \longrightarrow$ is not the diagonal of
 in the fame manner it can be demonftrated that no other line is except $=$.

> Q. E. D.
Let
given line, \quad and \quad unequal fegments, and \quad and \quad equal fegments;

then

For it has been demonftrated already (B. 2. pr. 5), that the fquare of half the line is equal to the rectangle contained by any unequal fegments together with the fquare of the part intermediate between the middle point and the point of unequal fection. The fquare defcribed on half the line exceeds therefore the rectangle contained by any unequal fegments of the line.
Q. E. D.

O divide a given Straight line
 fo that the rectangle contained by its segments may be equal to a given area, not exceeding the Square of half the line.

the problem is folved.
But if wo... ${ }^{2} \neq \cdots, \ldots m$, then mut $\cdot \ldots=$ ■

Draw \perp -

with as radius defcribe a circle cutting the given line ; draw \longrightarrow.

(B. 2. pr. 5.) $=\square^{\circ}$.

(B. I. pr. 47) ;

256 BOOK VI. PROP. XXVIII. PROB.
 and \therefore.---....- is fo divided

Q.E.D.

O produce a given ft raight line (that the rectangle contained by the fegments between the extremities of the given line and the point to which it is produced, may be equal to a given area, i.e. equal to the Square on

$$
\text { the fquare on } \longrightarrow
$$

with the radius \longrightarrow, defcribe a circle meeting _-.....- produced.

But $\longrightarrow-=-=-=-e^{2}+$

Q.E.D.

O cut a given finite ftraight line (__.....) in extreme and mean ratio.

On
defcribe the fquare
(B. 1. pr. 46) ; and produce \longrightarrow, fo that X .n......... $=$........ ${ }^{2}$
(B. 6. pr. 29) ;
take
 meeting $\|$ (B. 1. pr. 31).

and is $\therefore=$; and if from both thefe equals
be taken the common part \square
\square , which is the fquare of \qquad will be $=$, which is $=\ldots$...................

and
is divided in extreme and mean ratio.
(B. 6. def. 3).
Q.E.D.

F any fimilar rectilinear figures be fimilarly defcribed on the fides of a right an-
gled triangle (.....) , the figure defcribed on the fide (…..) Jubtending the right angle is equal to the fum of the figures on the other fides.

From the right angle draw perpendicular

(B. 6. pr. 20).
but

(B. 6. pr. 20).

Q. E. D.

 and
), have two fides proportional. (——: :: -.......-.-- :), and be fo placed at an angle that the homologous fides are parallel, the remaining fides (\quad and form one right line.

$$
=\quad \text { (B. 1. pr. 29); }
$$

$$
=\int(\text { B. 1. pr. 29) }
$$

\therefore

the triangles are equiangular (B. 6. pr. 6);

but

(B. 1. pr. 3^{2}), and \therefore
lie in the fame ftraight line (B. I. pr. 14).
Q.E.D.

N equal circles (\square), angles, whether at the centre or circumference, are in the fame ratio to one another as the arcs on which they fland $(:: \square:$ ounce); fo alfo are fectors.

Take in the circumference of
 any number of arcs $=, \& \mathrm{c}$. each $=$, and also in the circumference of
 take any number of arcs c....... , \cdot, , \& each $=$ ane mes, , draw the
 radii to the extremities of the equal arcs.

Then fine the arcs \quad, \quad, \&c. are all equal, the angles \quad, \&c. are alpo equal (B. 3. pr. 27) ;
\therefore is the fame multiple of which the arc is of ; and in the fame manner

is the fame multiple of , which the arc is of the arc

Then it is evident (B. 3. pr. 27),

1. \qquad (B. 5. def. 5), or the angles at the centre are as the arcs on which they ftand; but the angles at the circumference being halves of the angles at the centre (B. 3. pr. 20) are in the fame ratio (B. 5. pr. 15), and therefore are as the arcs on which they ftand.

It is evident, that fectors in equal circles, and on equal arcs are equal (B. 1. pr. 4; B. 3. prs. 24, 27, and def. 9). Hence, if the fectors be fubitituted for the angles in the above demonftration, the fecond part of the propofition will be eftablifhed, that is, in equal circles the fectors have the fame ratio to one another as the arcs on which they ftand.
Q. E. D.

F the right line (-0.......),
bifeEting an external

angle
meet the oppofite

fide (\longrightarrow) produced, that whole produced fide (—......), and its external Segment (---=-=--=) will be proportional to the fides (-nomen and which contain the angle adjacent to the external bifected angle.

(B. $5 \cdot \mathrm{pr} .7$) ;

But alfo,

(B. 6. pr. 2) ;
and therefore
(B. $5 \cdot \mathrm{pr}$ I1).
Q. E. D.
F an angle of a triangle be bifected by a firaight line, which likewife cuts the bafe; the rectangle contained by the fides of the triangle is equal to the rectangle contained by the fegments of the bafe, together with the fquare of the flraight line which bifects the angle.

Let

About

to meet the circle, and draw $-\omega+===0$.
produce \qquad
(B. 4. pr. 5),

(B. 6. pr. 4) ;

(B. 6. pr. 16.)

(B. 2. pr. 3);

(B. 3. pr. 35) ;
$\therefore — \times \sim=-\cdots+\cdots=$
Q. E. D.

F from any angle of a triangle a fraight line be drawn perpendicular to the bafe; the reEFangle contained by the fides of the triangle is equal to the rectangle contained by the perpendicular and the diameter of the circle defcribed about the triangle.

From
 draw mesoonco.e \perp-no....-_; then

Defcribe

(B. 4. pr. 5), draw its diameter

and \therefore........ X
(B. 6. pr. 16).
Q.E.D.

HE rectangle contained by the diagonals of a quadrilateral figure inforibed in a circle, is equal to both the rectangles contained by its oppofite fides.

Let
 be any quadrilateral figure infcribed in

Make $=($ B. . . pr. 23) ,

(B. 3. pr. 21);
$\therefore \quad$:
(B. 6. pr. 4) ;

(B. 6. pr. 16) ; again,
because
 (cont.),

$$
\text { and } V=\square(\text { B.3.pr.21) }
$$

(B. 6. pr. 4) ;

(B. 6. pr. 16) ;
but, from above,

(B. 2. pr. 1.
Q. E. D.

THE END.

[^0]: ** Algebraical and Arithmetical expositions of the Fifth Book of Euclid are given in Byrne's Doctrine of Proportion; published by Williams and Co. London. 1841.

